Scene Graph Generation Strategy with Co-occurrence Knowledge and Learnable Term Frequency

Hyeongjin Kim, Sangwon Kim, Dasom Ahn, Jong Taek Lee, Byoung Chul Ko

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

Scene graph generation (SGG) is an important task in image understanding because it represents the relationships between objects in an image as a graph structure, making it possible to understand the semantic relationships between objects intuitively. Previous SGG studies used a message-passing neural networks (MPNN) to update features, which can effectively reflect information about surrounding objects. However, these studies have failed to reflect the co-occurrence of objects during SGG generation. In addition, they only addressed the long-tail problem of the training dataset from the perspectives of sampling and learning methods. To address these two problems, we propose CooK, which reflects the Co-occurrence Knowledge between objects, and the learnable term frequency-inverse document frequency (TF-l-IDF) to solve the long-tail problem. We applied the proposed model to the SGG benchmark dataset, and the results showed a performance improvement of up to 3.8% compared with existing state-of-the-art models in SGGen subtask. The proposed method exhibits generalization ability from the results obtained, showing uniform performance improvement for all MPNN models.

Original languageEnglish
Pages (from-to)24094-24109
Number of pages16
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: 21 Jul 202427 Jul 2024

Fingerprint

Dive into the research topics of 'Scene Graph Generation Strategy with Co-occurrence Knowledge and Learnable Term Frequency'. Together they form a unique fingerprint.

Cite this