Searching for Controllable Image Restoration Networks

Heewon Kim, Sungyong Baik, Myungsub Choi, Janghoon Choi, Kyoung Mu Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

We present a novel framework for controllable image restoration that can effectively restore multiple types and levels of degradation of a corrupted image. The proposed model, named TASNet, is automatically determined by our neural architecture search algorithm, which optimizes the efficiency-accuracy trade-off of the candidate model architectures. Specifically, we allow TASNet to share the early layers across different restoration tasks and adaptively adjust the remaining layers with respect to each task. The shared task-agnostic layers greatly improve the efficiency while the task-specific layers are optimized for restoration quality, and our search algorithm seeks for the best balance between the two. We also propose a new data sampling strategy to further improve the overall restoration performance. As a result, TASNet achieves significantly faster GPU latency and lower FLOPs compared to the existing state-of-the-art models, while also showing visually more pleasing outputs. The source code and pre-trained models are available at https://github.com/ghimhw/TASNet.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages14214-14223
Number of pages10
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'Searching for Controllable Image Restoration Networks'. Together they form a unique fingerprint.

Cite this