TY - JOUR
T1 - Seasonal monitoring of bacteria and archaea in a full-scale thermophilic anaerobic digester treating food waste-recycling wastewater
T2 - Correlations between microbial community characteristics and process variables
AU - Lee, Joonyeob
AU - Han, Gyuseong
AU - Shin, Seung Gu
AU - Koo, Taewoan
AU - Cho, Kyungjin
AU - Kim, Woong
AU - Hwang, Seokhwan
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/9/15
Y1 - 2016/9/15
N2 - Microbial population size, community structure, and diversity, and the correlations of these characteristics with process variables were investigated in samples taken seasonally over two years from a full-scale thermophilic anaerobic digester treating food waste-recycling wastewater (FRW). The organic component of the FRW consisted of carbohydrate (35% of volatile solids), protein (34%) and lipid (30%). The chemical oxygen demand (COD) removal efficiency of the anaerobic digestion (AD) system negatively correlated with Na+ (2.9-7.7 g/L) and lipid (3.3-22.8 g/L) concentrations, which varied significantly over the two years. Tepidanaerobacter, Anaerobaculum, Defluviitoga, Keratinibaculum, Gelria, Tepidimicrobium, Caldicoprobacter, Bacillus, and Syntrophaceticus were the major bacterial genera, and Methanoculleus and Methanobacterium were the major archaeal genera. Concentrations of Na+ and lipid in the digester were negatively correlated with total bacterial and archaeal populations determined by real-time quantitative PCR. These concentrations could also significantly affect the bacterial community structure (e.g., negative correlations with Gelria), but not archaeal community structure. Lipid concentration was negatively correlated with bacterial diversity, but was not correlated with archaeal diversity. Ammonia concentration in the digester (2.0-4.3 g N/L) had no significant correlation with COD removal or total bacterial/archaeal populations, but could significantly affect both bacterial and archaeal community structures, including syntrophic acetate-oxidizing bacteria and hydrogenotrophic methanogens. These results indicate that Na+, lipid and ammonia are among the key parameters that affect the process performance of a thermophilic AD system treating FRW and/or the microbial communities in it.
AB - Microbial population size, community structure, and diversity, and the correlations of these characteristics with process variables were investigated in samples taken seasonally over two years from a full-scale thermophilic anaerobic digester treating food waste-recycling wastewater (FRW). The organic component of the FRW consisted of carbohydrate (35% of volatile solids), protein (34%) and lipid (30%). The chemical oxygen demand (COD) removal efficiency of the anaerobic digestion (AD) system negatively correlated with Na+ (2.9-7.7 g/L) and lipid (3.3-22.8 g/L) concentrations, which varied significantly over the two years. Tepidanaerobacter, Anaerobaculum, Defluviitoga, Keratinibaculum, Gelria, Tepidimicrobium, Caldicoprobacter, Bacillus, and Syntrophaceticus were the major bacterial genera, and Methanoculleus and Methanobacterium were the major archaeal genera. Concentrations of Na+ and lipid in the digester were negatively correlated with total bacterial and archaeal populations determined by real-time quantitative PCR. These concentrations could also significantly affect the bacterial community structure (e.g., negative correlations with Gelria), but not archaeal community structure. Lipid concentration was negatively correlated with bacterial diversity, but was not correlated with archaeal diversity. Ammonia concentration in the digester (2.0-4.3 g N/L) had no significant correlation with COD removal or total bacterial/archaeal populations, but could significantly affect both bacterial and archaeal community structures, including syntrophic acetate-oxidizing bacteria and hydrogenotrophic methanogens. These results indicate that Na+, lipid and ammonia are among the key parameters that affect the process performance of a thermophilic AD system treating FRW and/or the microbial communities in it.
KW - 454 pyrosequencing
KW - Anaerobic digestion
KW - Hydrogenotrophic methanogens
KW - Real-time quantitative polymerase chain reaction
KW - Sodium inhibition
KW - Syntrophic bacteria
UR - http://www.scopus.com/inward/record.url?scp=84964886213&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2016.04.097
DO - 10.1016/j.cej.2016.04.097
M3 - Article
AN - SCOPUS:84964886213
SN - 1385-8947
VL - 300
SP - 291
EP - 299
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
ER -