TY - JOUR
T1 - Secure authentication protocol for wireless sensor networks in vehicular communications
AU - Yu, Sungjin
AU - Lee, Joonyoung
AU - Lee, Kyungkeun
AU - Park, Kisung
AU - Park, Youngho
N1 - Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2018/10
Y1 - 2018/10
N2 - With wireless sensor networks (WSNs), a driver can access various useful information for convenient driving, such as traffic congestion, emergence, vehicle accidents, and speed. However, a driver and traffic manager can be vulnerable to various attacks because such information is transmitted through a public channel. Therefore, secure mutual authentication has become an important security issue, and many authentication schemes have been proposed. In 2017, Mohit et al. proposed an authentication protocol for WSNs in vehicular communications to ensure secure mutual authentication. However, their scheme cannot resist various attacks such as impersonation and trace attacks, and their scheme cannot provide secure mutual authentication, session key security, and anonymity. In this paper, we propose a secure authentication protocol for WSNs in vehicular communications to resolve the security weaknesses of Mohit et al.’s scheme. Our authentication protocol prevents various attacks and achieves secure mutual authentication and anonymity by using dynamic parameters that are changed every session. We prove that our protocol provides secure mutual authentication by using the Burrows–Abadi–Needham logic, which is a widely accepted formal security analysis. We perform a formal security verification by using the well-known Automated Validation of Internet Security Protocols and Applications tool, which shows that the proposed protocol is safe against replay and man-in-the-middle attacks. We compare the performance and security properties of our protocol with other related schemes. Overall, the proposed protocol provides better security features and a comparable computation cost. Therefore, the proposed protocol can be applied to practical WSNs-based vehicular communications.
AB - With wireless sensor networks (WSNs), a driver can access various useful information for convenient driving, such as traffic congestion, emergence, vehicle accidents, and speed. However, a driver and traffic manager can be vulnerable to various attacks because such information is transmitted through a public channel. Therefore, secure mutual authentication has become an important security issue, and many authentication schemes have been proposed. In 2017, Mohit et al. proposed an authentication protocol for WSNs in vehicular communications to ensure secure mutual authentication. However, their scheme cannot resist various attacks such as impersonation and trace attacks, and their scheme cannot provide secure mutual authentication, session key security, and anonymity. In this paper, we propose a secure authentication protocol for WSNs in vehicular communications to resolve the security weaknesses of Mohit et al.’s scheme. Our authentication protocol prevents various attacks and achieves secure mutual authentication and anonymity by using dynamic parameters that are changed every session. We prove that our protocol provides secure mutual authentication by using the Burrows–Abadi–Needham logic, which is a widely accepted formal security analysis. We perform a formal security verification by using the well-known Automated Validation of Internet Security Protocols and Applications tool, which shows that the proposed protocol is safe against replay and man-in-the-middle attacks. We compare the performance and security properties of our protocol with other related schemes. Overall, the proposed protocol provides better security features and a comparable computation cost. Therefore, the proposed protocol can be applied to practical WSNs-based vehicular communications.
KW - Authentication
KW - AVISPA
KW - BAN logic
KW - Formal security analysis
KW - Vehicular communications
KW - Wireless sensor network
UR - https://www.scopus.com/pages/publications/85053832042
U2 - 10.3390/s18103191
DO - 10.3390/s18103191
M3 - Article
C2 - 30248898
AN - SCOPUS:85053832042
SN - 1424-8220
VL - 18
JO - Sensors
JF - Sensors
IS - 10
M1 - 3191
ER -