TY - JOUR
T1 - Selecting Disaster Waste Transportation Routes to Reduce Overlapping of Transportation Routes after Floods
AU - Lee, Yoon Ha
AU - Kim, Young Chan
AU - Seo, Hyuncheol
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - Disasters have been a major subject of research considering damages caused in terms of losses of lives and properties and the functionality of critical services in cities. Floods generate large amounts of waste, causing several functional deteriorations, such as disrupted transportation, water supply, and wastewater management. Hence, it is necessary to establish an effective plan to secure urban resilience during the disaster response and recovery phases. This study proposes a method to reduce overlaps between disaster waste transportation routes and other emergency response activities after floods in the response and recovery phases. The network analysis of a geographic information system was used to analyze the supplying routes of evacuation, rescue/aid, hospital trans-portation, and police services for each disaster phase to reduce the overlapping of routes. The results showed that by using the proposed method, the average length of the disaster waste transportation routes increased by 25.29% and 9.80% in the response and recovery phases, respectively, whereas the length of the sections overlapping with the routes providing critical services decreased by 47.49% and 55.57% in the response and recovery phases, respectively. We believe that the proposed method identifies new corresponding key issues to establish disaster waste management plans to secure urban resilience after a disaster.
AB - Disasters have been a major subject of research considering damages caused in terms of losses of lives and properties and the functionality of critical services in cities. Floods generate large amounts of waste, causing several functional deteriorations, such as disrupted transportation, water supply, and wastewater management. Hence, it is necessary to establish an effective plan to secure urban resilience during the disaster response and recovery phases. This study proposes a method to reduce overlaps between disaster waste transportation routes and other emergency response activities after floods in the response and recovery phases. The network analysis of a geographic information system was used to analyze the supplying routes of evacuation, rescue/aid, hospital trans-portation, and police services for each disaster phase to reduce the overlapping of routes. The results showed that by using the proposed method, the average length of the disaster waste transportation routes increased by 25.29% and 9.80% in the response and recovery phases, respectively, whereas the length of the sections overlapping with the routes providing critical services decreased by 47.49% and 55.57% in the response and recovery phases, respectively. We believe that the proposed method identifies new corresponding key issues to establish disaster waste management plans to secure urban resilience after a disaster.
KW - Disaster waste management
KW - Emergency response activity
KW - Flood waste transportation route
KW - Urban resilience
UR - http://www.scopus.com/inward/record.url?scp=85125814401&partnerID=8YFLogxK
U2 - 10.3390/su14052866
DO - 10.3390/su14052866
M3 - Article
AN - SCOPUS:85125814401
SN - 2071-1050
VL - 14
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 5
M1 - 2866
ER -