TY - JOUR
T1 - Selective chlorine evolution reaction using Pt-RuO2 electrocatalysts in brackish water and seawater at circum-neutral pH and its application to seawater desalination
AU - Liang, Nan Nan
AU - Han, Dong Suk
AU - Kim, Seonghun
AU - Park, Hyunwoong
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/10
Y1 - 2024/10
N2 - Precious metal-based mixed metal oxides have been widely used as catalysts for the chlorine evolution reaction (CER). However, a concurrent oxygen evolution reaction (OER) leads to insufficient selectivity for CER at circum-neutral pH. Herein, nanoparticulate Pt-RuO2 (PRO) is synthesized with various Pt/Ru ratios at sub-boiling temperatures, followed by post-annealing. The synthetic conditions significantly influence the physicochemical properties (crystalline structures, morphologies, surface areas, double-layer capacitance, and charge transfer resistance) and the electrocatalytic activities of CER in NaCl solutions (0.137 and 0.5 M) and seawater (with a salinity of 3.6 g L–1). Among PRO-x@y samples (where x is the mole fraction of Pt in the mixed Pt and Ru precursor solutions, and y is the annealing temperature [°C]), PRO-0.2@800 and PRO-0.8@500 show remarkable faradaic efficiencies (FEs) for CER (CER-FE). Despite their similar FEs (CER-FEs of approximately 95 % and 99 %, and OER-FEs of 4–6 % and <1 %, for PRO-0.2 and PRO-0.8, respectively), the Pt-rich PRO requires less potential for the same current density (J) and exhibits excellent stability at J = 800 mA cm–2 over 250 h in seawater at circum-neutral pH. The optimized PRO electrode is further used for seawater desalination and simultaneous production of HClO, achieving FEs of ∼100 %. Finally, various electrochemical analyses are conducted to elucidate the CER mechanism.
AB - Precious metal-based mixed metal oxides have been widely used as catalysts for the chlorine evolution reaction (CER). However, a concurrent oxygen evolution reaction (OER) leads to insufficient selectivity for CER at circum-neutral pH. Herein, nanoparticulate Pt-RuO2 (PRO) is synthesized with various Pt/Ru ratios at sub-boiling temperatures, followed by post-annealing. The synthetic conditions significantly influence the physicochemical properties (crystalline structures, morphologies, surface areas, double-layer capacitance, and charge transfer resistance) and the electrocatalytic activities of CER in NaCl solutions (0.137 and 0.5 M) and seawater (with a salinity of 3.6 g L–1). Among PRO-x@y samples (where x is the mole fraction of Pt in the mixed Pt and Ru precursor solutions, and y is the annealing temperature [°C]), PRO-0.2@800 and PRO-0.8@500 show remarkable faradaic efficiencies (FEs) for CER (CER-FE). Despite their similar FEs (CER-FEs of approximately 95 % and 99 %, and OER-FEs of 4–6 % and <1 %, for PRO-0.2 and PRO-0.8, respectively), the Pt-rich PRO requires less potential for the same current density (J) and exhibits excellent stability at J = 800 mA cm–2 over 250 h in seawater at circum-neutral pH. The optimized PRO electrode is further used for seawater desalination and simultaneous production of HClO, achieving FEs of ∼100 %. Finally, various electrochemical analyses are conducted to elucidate the CER mechanism.
KW - Chlorine evolution reaction
KW - Mixed metal oxides
KW - Oxygen evolution reaction
KW - Seawater electrolysis
KW - Selectivity
UR - http://www.scopus.com/inward/record.url?scp=85199705611&partnerID=8YFLogxK
U2 - 10.1016/j.jece.2024.113622
DO - 10.1016/j.jece.2024.113622
M3 - Article
AN - SCOPUS:85199705611
SN - 2213-2929
VL - 12
JO - Journal of Environmental Chemical Engineering
JF - Journal of Environmental Chemical Engineering
IS - 5
M1 - 113622
ER -