TY - JOUR
T1 - Semantic segmentation of remote-sensing imagery using heterogeneous big data
T2 - International society for photogrammetry and remote sensing potsdam and cityscape datasets
AU - Song, Ahram
AU - Kim, Yongil
N1 - Publisher Copyright:
© 2020 by the authors.
PY - 2020/10
Y1 - 2020/10
N2 - Although semantic segmentation of remote-sensing (RS) images using deep-learning networks has demonstrated its effectiveness recently, compared with natural-image datasets, obtaining RS images under the same conditions to construct data labels is difficult. Indeed, small datasets limit the effective learning of deep-learning networks. To address this problem, we propose a combined U-net model that is trained using a combined weighted loss function and can handle heterogeneous datasets. The network consists of encoder and decoder blocks. The convolutional layers that form the encoder blocks are shared with the heterogeneous datasets, and the decoder blocks are assigned separate training weights. Herein, the International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam and Cityscape datasets are used as the RS and natural-image datasets, respectively. When the layers are shared, only visible bands of the ISPRS Potsdam data are used. Experimental results show that when same-sized heterogeneous datasets are used, the semantic segmentation accuracy of the Potsdam data obtained using our proposed method is lower than that obtained using only the Potsdam data (four bands) with other methods, such as SegNet, DeepLab-V3+, and the simplified version of U-net. However, the segmentation accuracy of the Potsdam images is improved when the larger Cityscape dataset is used. The combined U-net model can effectively train heterogeneous datasets and overcome the insufficient training data problem in the context of RS-image datasets. Furthermore, it is expected that the proposed method can not only be applied to segmentation tasks of aerial images but also to tasks with various purposes of using big heterogeneous datasets.
AB - Although semantic segmentation of remote-sensing (RS) images using deep-learning networks has demonstrated its effectiveness recently, compared with natural-image datasets, obtaining RS images under the same conditions to construct data labels is difficult. Indeed, small datasets limit the effective learning of deep-learning networks. To address this problem, we propose a combined U-net model that is trained using a combined weighted loss function and can handle heterogeneous datasets. The network consists of encoder and decoder blocks. The convolutional layers that form the encoder blocks are shared with the heterogeneous datasets, and the decoder blocks are assigned separate training weights. Herein, the International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam and Cityscape datasets are used as the RS and natural-image datasets, respectively. When the layers are shared, only visible bands of the ISPRS Potsdam data are used. Experimental results show that when same-sized heterogeneous datasets are used, the semantic segmentation accuracy of the Potsdam data obtained using our proposed method is lower than that obtained using only the Potsdam data (four bands) with other methods, such as SegNet, DeepLab-V3+, and the simplified version of U-net. However, the segmentation accuracy of the Potsdam images is improved when the larger Cityscape dataset is used. The combined U-net model can effectively train heterogeneous datasets and overcome the insufficient training data problem in the context of RS-image datasets. Furthermore, it is expected that the proposed method can not only be applied to segmentation tasks of aerial images but also to tasks with various purposes of using big heterogeneous datasets.
KW - Big dataset
KW - Cityscape dataset
KW - Deep learning
KW - ISPRS Potsdam dataset
KW - Semantic segmentation
UR - http://www.scopus.com/inward/record.url?scp=85092664677&partnerID=8YFLogxK
U2 - 10.3390/ijgi9100601
DO - 10.3390/ijgi9100601
M3 - Article
AN - SCOPUS:85092664677
SN - 2220-9964
VL - 9
JO - ISPRS International Journal of Geo-Information
JF - ISPRS International Journal of Geo-Information
IS - 10
M1 - 2221
ER -