Abstract
Let D be an integral domain with quotient field K, Γ a nonzero torsion-free grading monoid and Γ ∗= Γ \ { 0 }. In this paper, we characterize when the semigroup ring D[Γ] is an almost Prüfer v-multiplication domain or an almost Prüfer domain. We also give an equivalent condition for the composite semigroup ring D+ K[Γ ∗] to be an almost Prüfer v-multiplication domain or an almost Prüfer domain when Γ ∩ - Γ = { 0 }.
Original language | English |
---|---|
Pages (from-to) | 53-63 |
Number of pages | 11 |
Journal | Semigroup Forum |
Volume | 97 |
Issue number | 1 |
DOIs | |
State | Published - 1 Aug 2018 |
Keywords
- Almost Prüfer domain
- Almost Prüfer v-multiplication domain
- Composite semigroup ring D+ K[Γ ]
- Root extension
- Semigroup ring D[Γ]