Abstract
Nitric oxide (NO) is a widely recognized mediator of physiological and pathophysiological signal transmission. In an attempt to better understand the molecular actions of NO in astrocytes, stress protein expression in response to NO donor sodium nitroprusside was investigated. Heme oxygenase-1 (HO-1) has been identified as an inducer of manganese superoxide dismutase (MnSOD), playing a cytoprotective role under the condition of nitrosative stress. We present evidence that the sequential induction of HO-1 and MnSOD protects astrocytes from NO toxicity: (1) both HO-1 and MnSOD expression were induced by NO; (2) NO-mediated increase in MnSOD activity was partly abolished by HO-1 inhibitor Zn(II) protoporphyrin IX (ZnPP); (3) pretreatment of astrocytes with a nontoxic dose of NO protected the cells against the later treatment with a toxic dose of NO; (4) inhibition of HO-1 by ZnPP sensitized astrocytes to the nontoxic dose of NO resulting in a marked cytotoxicity; and (5) adenovirus-mediated overexpression of MnSOD protected astrocytes from the NO toxicity. The molecular action of NO in astrocytes appears to be dose-dependent. While a high dose of NO exerts cytotoxicity leading to the tissue damage in the central nervous system, a low dose of NO may act as an important signaling molecule in astrocytes with concurrent induction of cytoprotective proteins such as HO-1 and MnSOD.
Original language | English |
---|---|
Pages (from-to) | 590-597 |
Number of pages | 8 |
Journal | Biochemical Pharmacology |
Volume | 70 |
Issue number | 4 |
DOIs | |
State | Published - 15 Aug 2005 |
Keywords
- Astrocyte
- Cell death
- Cytoprotection
- Inflammation
- Nitric oxide
- Signal transduction