Set-theoretic Yang-Baxter (co)homology theory of involutive non-degenerate solutions

Józef H. Przytycki, Petr Vojtěchovský, Seung Yeop Yang

Research output: Contribution to journalArticlepeer-review

Abstract

W. Rump showed that there exists a one-to-one correspondence between involutive right non-degenerate solutions of the Yang-Baxter equation and cycle sets. J. S. Carter, M. Elhamdadi, and M. Saito, meanwhile, introduced a homology theory of set-theoretic solutions of the Yang-Baxter equation in order to define cocycle invariants of classical knots. In this paper, we introduce the normalized homology theory of an involutive right non-degenerate solution of the Yang-Baxter equation and compute the normalized set-theoretic Yang-Baxter homology of cyclic racks. Moreover, we explicitly calculate some two-cocycles, which can be used to classify certain families of torus links.

Original languageEnglish
Article number2340021
JournalJournal of Knot Theory and its Ramifications
DOIs
StateAccepted/In press - 2023

Keywords

  • cycle set
  • normalized Yang-Baxter (co)homology theory
  • Set-theoretical solution of Yang-Baxter equation

Fingerprint

Dive into the research topics of 'Set-theoretic Yang-Baxter (co)homology theory of involutive non-degenerate solutions'. Together they form a unique fingerprint.

Cite this