Abstract
Increasing concerns regarding the adverse effects of radioactive iodine waste have inspired the development of a highly efficient and sustainable desalination process for the treatment of radioactive iodine-contaminated water. Because of the high affinity of silver towards iodine species, silver nanoparticles immobilized on a cellulose acetate membrane (Ag-CAM) and biogenic silver nanoparticles containing the radiation-resistant bacterium Deinococcus radiodurans (Ag-DR) were developed and investigated for desalination performance in removing radioactive iodines from water. A simple filtration of radioactive iodine using Ag-CAM under continuous in-flow conditions (approximately 1.5 mL/s) provided an excellent removal efficiency (>99%) as well as iodide anion-selectivity. In the bioremediation study, the radioactive iodine was rapidly captured by Ag-DR in the presence of high concentration of competing anions in a short time. The results from both procedures can be visualized by using single-photon emission computed tomography (SPECT) scanning. This work presents a promising desalination method for the removal of radioactive iodine and a practical application model for remediating radioelement-contaminated waters.
Original language | English |
---|---|
Article number | 660 |
Journal | Nanomaterials |
Volume | 8 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2018 |
Keywords
- Bioremediation
- Desalination
- Membrane
- Nanocomposite
- Radioactive iodine
- Silver nanomaterials