@inproceedings{fd8c116a8bfe4930af228720719ae8ac,
title = "Skip-StyleGAN: Skip-Connected Generative Adversarial Networks for Generating 3D Rendered Image of Hand Bone Complex",
abstract = "Computed tomography (CT) is commonly used for fracture diagnosis because it provides accurate visualization of shape with 3-dimensional(3D) structure. However, CT has some disadvantages such as the high dose of radiation involved in scanning, and relatively high expense compared to X-ray. Also, it is difficult to scan CT in the operation room despite it is necessary to check 3D structure during operation. On the other hand, X-ray is often used in operating rooms because it is relatively simple to scan. However, since X-ray only provides overlapped 2D images, surgeons should rely on 2D images to imagine 3D structure of a target shape. If we can create a 3D structure from a single 2D X-ray image, then it will be clinically valuable. Therefore, we propose Skip-StyleGAN that can efficiently generate rotated images of a given 2D image from 3D rendered shape. Based on the StyleGAN, we arrange training sequence and add skip-connection from the discriminator to the generator. Important discriminative information is transferred through this skip-connection, and it allows the generator to easily produce an appropriately rotated image by making a little variation during the training process. With the effect of skip-connection, Skip-StyleGAN can efficiently generate high-quality 3D rendered images even with small-sized data. Our experiments show that the proposed model successfully generates 3D rendered images of the hand bone complex.",
keywords = "3D rendering, CT, Generative adversarial networks, Hand bone complex, Skip-connection, Skip-StyleGAN, X-ray",
author = "Jaesin Ahn and Lee, {Hyun Joo} and Inchul Choi and Minho Lee",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Nature Switzerland AG.; 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 ; Conference date: 04-10-2020 Through 08-10-2020",
year = "2020",
doi = "10.1007/978-3-030-59719-1_72",
language = "English",
isbn = "9783030597184",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "745--754",
editor = "Martel, {Anne L.} and Purang Abolmaesumi and Danail Stoyanov and Diana Mateus and Zuluaga, {Maria A.} and Zhou, {S. Kevin} and Daniel Racoceanu and Leo Joskowicz",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings",
address = "Germany",
}