Abstract
Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages. To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in animal models and the effect of sodium butyrate on radiation exposure-induced cognitive impairments, adult C57BL/6 mice were intraperitoneally treated with 0.6 g/kg sodium butyrate before exposure to 10 Gy cranial irradiation. Cognitive impairment in adult C57BL/6 mice was evaluated via an object recognition test 30 days after irradiation. We also detected the expression levels of neurogenic cell markers (doublecortin) and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor. Radiation-exposed mice had decreased cognitive function and hippocampal doublecortin and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression. Sodium butyrate pretreatment reversed these changes. These findings suggest that sodium butyrate can improve radiation-induced cognitive dysfunction through inhibiting the decrease in hippocampal phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression. The study procedures were approved by the Institutional Animal Care and Use Committee of Korea Institute of Radiological Medical Sciences (approval No. KIRAMS16-0002) on December 30, 2016.
Original language | English |
---|---|
Pages (from-to) | 1530-1535 |
Number of pages | 6 |
Journal | Neural Regeneration Research |
Volume | 14 |
Issue number | 9 |
DOIs | |
State | Published - 1 Sep 2019 |
Keywords
- brain-derived neurotrophic factor
- cAMP response element binding
- hippocampal damage
- histone deacetylase inhibitor
- ionizing radiation
- neurogenesis
- radioprotector
- sodium butyrate