Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes

Sung Kyu Choi, Wonyong Choi, Hyunwoong Park

Research output: Contribution to journalArticlepeer-review

147 Scopus citations

Abstract

A naturally abundant nickel-borate (Ni-Bi) complex is demonstrated to successfully catalyze the photoelectrochemical (PEC) water oxidation of BiVO4 electrodes at 1.23 VRHE with nearly 100% faradaic efficiency for oxygen evolution. Ni-Bi is electrodeposited (ED) and photodeposited (PD) for varying times on BiVO4 electrodes in the 0.1 M borate electrolyte with 1 mM Ni2+ at pH 9.2. Surprisingly, optimally deposited Ni-Bi films (ED-10 s and PD-30 min) display the same layer thickness of ca. 40 nm. Both Ni-Bi films enhance the photocurrent generation of BiVO4 at 1.23 VRHE by a factor of 3-4 under AM 1.5-light irradiation (100 mW cm-2) along with ca. 250% increase in the incident and absorbed photon-to-current efficiencies. Impedance analysis further reveals that the charge transfer resistance at BiVO4 is markedly decreased by Ni-Bi deposits. The primary role of Ni-Bi has been suggested to be a hole-conductor making photogenerated electrons more mobile and catalyzing a four-hole transfer to water through cyclic changes between the lower and higher Ni oxidation states. However, thick Ni-Bi films (>∼40 nm) significantly reduce the PEC performance of BiVO4 due to the kinetic bottleneck and charge recombination. Under identical PEC conditions (0.1 M, pH 9.2), the borate electrolyte (good proton acceptor) is found to be better than nitrate (poor proton acceptor), indicative of a proton-coupled electron transfer pathway in PEC water oxidation.

Original languageEnglish
Pages (from-to)6499-6507
Number of pages9
JournalPhysical Chemistry Chemical Physics
Volume15
Issue number17
DOIs
StatePublished - 7 May 2013

Fingerprint

Dive into the research topics of 'Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes'. Together they form a unique fingerprint.

Cite this