TY - JOUR
T1 - Solvent-dependent aromatic versus antiaromatic conformational switching in meso-(heptakis)pentafluorophenyl [32]heptaphyrin
AU - Yoon, Min Chul
AU - Shin, Jae Yoon
AU - Lim, Jong Min
AU - Saito, Shohei
AU - Yoneda, Tomoki
AU - Osuka, Atsuhiro
AU - Kim, Dongho
PY - 2011/6/6
Y1 - 2011/6/6
N2 - We have investigated conformational switching dynamics of meso-heptakis(pentafluorophenyl) [32]heptaphyrin(1.1.1.1.1.1.1) in various solvents using steady-state, time-resolved, and temperature-dependent spectroscopy. Absorption and fluorescence spectra of [32]heptaphyrin are quite sensitive to solvent environments. In nonpolar toluene, the antiaromatic figure-of-eight conformation is dominant, as seen in the X-ray crystallography, based on broad and weak absorption bands without any fluorescence and moderate paratropic ring current. On the other hand, a well-resolved sharp absorption spectrum, strong fluorescence, and diatropic ring current in the 1H NMR spectrum in slightly polar THF indicate that most of [32]heptaphyrin molecules take significantly distorted Möbius conformation with aromatic character. By using transient absorption (TA) spectroscopy, the lowest singlet excited-state lifetimes have been revealed to decay biexponentially with the time constants of 5 and 65 ps for figure-of-eight and Möbius conformations, respectively. Based on these results along with vertical excitation energy calculations, we are able to assign two conformers as Hückel antiaromatic and Möbius aromatic species, respectively; it shoulf be noted that the aromaticity/antiaromaticity does not change with temperature variation. Interestingly, in moderately polar solvent, ethyl ether, we find out that these two conformational isomers coexist with a dynamic equilibrium, as revealed by excitation-wavelength-dependent TA, temperature-dependent absorption and 1H NMR spectra. Through our findings, we have demonstrated that the conformational switching dynamics between Hückel antiaromatic and Möbius aromatic conformers in [32]heptaphyrin(1.1.1.1.1.1.1) are strongly affected by solvent medium as well as temperature.
AB - We have investigated conformational switching dynamics of meso-heptakis(pentafluorophenyl) [32]heptaphyrin(1.1.1.1.1.1.1) in various solvents using steady-state, time-resolved, and temperature-dependent spectroscopy. Absorption and fluorescence spectra of [32]heptaphyrin are quite sensitive to solvent environments. In nonpolar toluene, the antiaromatic figure-of-eight conformation is dominant, as seen in the X-ray crystallography, based on broad and weak absorption bands without any fluorescence and moderate paratropic ring current. On the other hand, a well-resolved sharp absorption spectrum, strong fluorescence, and diatropic ring current in the 1H NMR spectrum in slightly polar THF indicate that most of [32]heptaphyrin molecules take significantly distorted Möbius conformation with aromatic character. By using transient absorption (TA) spectroscopy, the lowest singlet excited-state lifetimes have been revealed to decay biexponentially with the time constants of 5 and 65 ps for figure-of-eight and Möbius conformations, respectively. Based on these results along with vertical excitation energy calculations, we are able to assign two conformers as Hückel antiaromatic and Möbius aromatic species, respectively; it shoulf be noted that the aromaticity/antiaromaticity does not change with temperature variation. Interestingly, in moderately polar solvent, ethyl ether, we find out that these two conformational isomers coexist with a dynamic equilibrium, as revealed by excitation-wavelength-dependent TA, temperature-dependent absorption and 1H NMR spectra. Through our findings, we have demonstrated that the conformational switching dynamics between Hückel antiaromatic and Möbius aromatic conformers in [32]heptaphyrin(1.1.1.1.1.1.1) are strongly affected by solvent medium as well as temperature.
KW - aromaticity
KW - expanded porphyrins
KW - Möbius confomation
KW - porphyrinoids
KW - ultrafast spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=79957937666&partnerID=8YFLogxK
U2 - 10.1002/chem.201003736
DO - 10.1002/chem.201003736
M3 - Article
AN - SCOPUS:79957937666
SN - 0947-6539
VL - 17
SP - 6707
EP - 6715
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 24
ER -