TY - JOUR
T1 - Stimuli-triggered Formation of Polymersomes from W/O/W Multiple Double Emulsion Droplets Containing Poly(styrene)-block-poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl)
AU - Kim, Mi Ri
AU - Cheong, In Woo
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/9/13
Y1 - 2016/9/13
N2 - We report stimuli-triggered fabrication of polymersomes from water-in-oil-in-water (W/O/W) multiple double emulsion droplets and the dual-stimuli (temperature and UV) responsive behavior of corresponding polymersomes. The polymersome comprises Tween20, cholesterol, and poly(styrene)-block-poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl), i.e., PS-b-P(NIPAAm-co-SPO), synthesized by stepwise reversible addition-fragmentation chain transfer (RAFT) polymerization. Amphiphilic PS-b-P(NIPAAm-co-SPO) copolymer forms micelles in water above the critical micelle concentration (CMC) of 0.7 g/L at 23 °C. The micelles show a temperature-driven aggregation among the micelles above 30.6 °C, confirmed by a decrease in UV-vis transmittance. The micelles also show a color change without colloidal instability under 365 nm UV at room temperature. PS-b-P(NIPAAm-co-SPO) plays not only a role of the polymeric surfactant in the preparation of W/O/W multiple double emulsions but also an important role in the stimuli-triggered transformation from multi- to single-core double emulsion droplets under heat and UV light irradiation. It was found that the morphological transformation of W/O/W multiple double emulsions by UV irradiation was much faster than temperature change. Dual-responsive polymersomes were simply prepared after solvent removal and they exhibit stable and reversible size and color variations under temperature and UV-visible changes, respectively.
AB - We report stimuli-triggered fabrication of polymersomes from water-in-oil-in-water (W/O/W) multiple double emulsion droplets and the dual-stimuli (temperature and UV) responsive behavior of corresponding polymersomes. The polymersome comprises Tween20, cholesterol, and poly(styrene)-block-poly(N-isopropylacrylamide-co-spironaphthoxazine methacryloyl), i.e., PS-b-P(NIPAAm-co-SPO), synthesized by stepwise reversible addition-fragmentation chain transfer (RAFT) polymerization. Amphiphilic PS-b-P(NIPAAm-co-SPO) copolymer forms micelles in water above the critical micelle concentration (CMC) of 0.7 g/L at 23 °C. The micelles show a temperature-driven aggregation among the micelles above 30.6 °C, confirmed by a decrease in UV-vis transmittance. The micelles also show a color change without colloidal instability under 365 nm UV at room temperature. PS-b-P(NIPAAm-co-SPO) plays not only a role of the polymeric surfactant in the preparation of W/O/W multiple double emulsions but also an important role in the stimuli-triggered transformation from multi- to single-core double emulsion droplets under heat and UV light irradiation. It was found that the morphological transformation of W/O/W multiple double emulsions by UV irradiation was much faster than temperature change. Dual-responsive polymersomes were simply prepared after solvent removal and they exhibit stable and reversible size and color variations under temperature and UV-visible changes, respectively.
UR - http://www.scopus.com/inward/record.url?scp=84987817194&partnerID=8YFLogxK
U2 - 10.1021/acs.langmuir.6b02178
DO - 10.1021/acs.langmuir.6b02178
M3 - Article
AN - SCOPUS:84987817194
SN - 0743-7463
VL - 32
SP - 9223
EP - 9228
JO - Langmuir
JF - Langmuir
IS - 36
ER -