Strong and selective inhibitory effects of the biflavonoid selamariscina a against CYP2C8 and CYP2C9 enzyme activities in human liver microsomes

So Young Park, Phi Hung Nguyen, Gahyun Kim, Su Nyeong Jang, Ga Hyun Lee, Nguyen Minh Phuc, Zhexue Wu, Kwang Hyeon Liu

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Like flavonoids, biflavonoids, dimeric flavonoids, and polyphenolic plant secondary metabolites have antioxidant, antibacterial, antiviral, anti-inflammatory, and anti-cancer properties. However, there is limited data on their effects on cytochrome P450 (P450) and uridine 5'- diphosphoglucuronosyl transferase (UGT) enzyme activities. In this study we evaluate the inhibitory potential of five biflavonoids against nine P450 activities (P450s1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A) in human liver microsomes (HLMs) using cocktail incubation and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The most strongly inhibited P450 activity was CYP2C8-mediated amodiaquine N-dealkylation with IC50 ranges of 0.019~0.123 µM. In addition, the biflavonoids-selamariscina A, amentoflavone, robustaflavone, cupressuflavone, and taiwaniaflavone-noncompetitively inhibited CYP2C8 activity with respective Ki values of 0.018, 0.083, 0.084, 0.103, and 0.142 µM. As selamariscina A showed the strongest effects, we then evaluated it against six UGT isoforms, where it showed weaker inhibition (UGTs1A1, 1A3, 1A4, 1A6, 1A9, and 2B7, IC50 > 1.7 µM). Returning to the P450 activities, selamariscina A inhibited CYP2C9-mediated diclofenac hydroxylation and tolbutamide hydroxylation with respective Ki values of 0.032 and 0.065 µM in a competitive and noncompetitive manner. However, it only weakly inhibited CYP1A2, CYP2B6, and CYP3A with respective Ki values of 3.1, 7.9, and 4.5 µM. We conclude that selamariscina A has selective and strong inhibitory effects on the CYP2C8 and CYP2C9 isoforms. This information might be useful in predicting herb-drug interaction potential between biflavonoids and co-administered drugs mainly metabolized by CYP2C8 and CYP2C9. In addition, selamariscina A might be used as a strong CYP2C8 and CYP2C9 inhibitor in P450 reactionphenotyping studies to identify drug-metabolizing enzymes responsible for the metabolism of new chemicals.

Original languageEnglish
Article number343
JournalPharmaceutics
Volume12
Issue number4
DOIs
StatePublished - Apr 2020

Keywords

  • Biflavonoid
  • Cytochrome P450
  • Drug interactions
  • Selamariscina A
  • Uridine 5'- diphosphoglucuronosyl transferase

Fingerprint

Dive into the research topics of 'Strong and selective inhibitory effects of the biflavonoid selamariscina a against CYP2C8 and CYP2C9 enzyme activities in human liver microsomes'. Together they form a unique fingerprint.

Cite this