Abstract
Dietary supplementation with indigestible carbohydrates is known to improve the gut environment and prevent obesity and inflammatory diseases by modulating the gut microbiota. In previous work, we established a method for the production of resistant starch (RS)-enriched high-amylose rice (R-HAR) using citric acid. The present study aimed to evaluate changes in structural characteristics during digestion of R-HAR and its effects on the gut health. A three-step in vitro digestion and fermentation model was used, then, RS content, scanning electron microscopy, and branch chain length distribution were analyzed during in vitro digestion. During the digestion of R-HAR, the RS content increased, and the structure was predicted to have a greater impact on the gut microbiota and gut environment. To study the intestinal health effects of R-HAR, its anti-inflammatory and gut barrier integrity activities were assayed in HFD-induced mice. Intake of R-HAR suppressed colonic shortening and inflammatory responses induced by HFD. Furthermore, R-HAR exhibited gut barrier protective activity with an increase in tight junction protein levels. We determined that R-HAR may be a potentially beneficial intestinal environment improver, which may have various implications in the food industry as rice.
Original language | English |
---|---|
Article number | 113011 |
Journal | Food Research International |
Volume | 170 |
DOIs | |
State | Published - Aug 2023 |
Keywords
- Citric acid
- Gut barrier
- High-amylose rice
- In vitro digestion
- Intestinal health
- Resistant starch