Structural insight into bi-functional malonyl-CoA reductase

Hyeoncheol Francis Son, Sangwoo Kim, Hogyun Seo, Jiyeon Hong, Donghoon Lee, Kyeong Sik Jin, Sunghoon Park, Kyung Jin Kim

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

The bi-functional malonyl-CoA reductase is a key enzyme of the 3-hydroxypropionate bi-cycle for bacterial CO2 fixation, catalysing the reduction of malonyl-CoA to malonate semialdehyde and further reduction to 3-hydroxypropionate. Here, we report the crystal structure and the full-length architecture of malonyl-CoA reductase from Porphyrobacter dokdonensis. The malonyl-CoA reductase monomer of 1230 amino acids consists of four tandemly arranged short-chain dehydrogenases/reductases, with two catalytic and two non-catalytic short-chain dehydrogenases/reductases, and forms a homodimer through paring contact of two malonyl-CoA reductase monomers. The complex structures with its cofactors and substrates revealed that the malonyl-CoA substrate site is formed by the cooperation of two short-chain dehydrogenases/reductases and one novel extra domain, while only one catalytic short-chain dehydrogenase/reductase contributes to the formation of the malonic semialdehyde-binding site. The phylogenetic and structural analyses also suggest that the bacterial bi-functional malonyl-CoA has a structural origin that is completely different from the archaeal mono-functional malonyl-CoA and malonic semialdehyde reductase, and thereby constitute an efficient enzyme.

Original languageEnglish
Pages (from-to)752-765
Number of pages14
JournalEnvironmental Microbiology
Volume22
Issue number2
DOIs
StatePublished - 1 Feb 2020

Fingerprint

Dive into the research topics of 'Structural insight into bi-functional malonyl-CoA reductase'. Together they form a unique fingerprint.

Cite this