TY - JOUR
T1 - Structure-mechanical analysis of various fixation constructs for basicervical fractures of the proximal femur and clinical implications; finite element analysis
AU - Kim, Joon Woo
AU - Oh, Chang Wug
AU - Kim, Beom Soo
AU - Jeong, Se Lin
AU - Jung, Gu Hee
AU - Lee, Dong Hyun
N1 - Publisher Copyright:
© 2022
PY - 2023/2
Y1 - 2023/2
N2 - Objective: This present study was conducted to determine the structural-mechanical stability of various fixation constructs through finite element (FE) analysis following simulation of a basicervical fracture and to introduce the clinical implications. Materials and Methods: We simulated fracture models by using a right synthetic femur (SAWBONES®). We imported the implant models into ANSYS® for placement in an optimal position. Five assembly models were constructed: (1) multiple cancellous screws (MCS), (2) FNS (femoral neck system®), (3) dynamic hip screw (DHS), (4) DHS with anti-rotation 7.0 screw (DHS + screw), and PFNA-II (Proximal Femoral Nail Antirotation-II®). The femur model's distal end was completely fixed and 7° abducted. We set the force vector at a 3° angle laterally and 15° posteriorly from the vertical ground. Analysis was done using Ansys® software with von Mises stress (VMS) in megapascals (MPa) and displacement (mm) Results: The displacements of the proximal femur were 10.25 mm for MCS, 9.66 mm for DHS, 9.44 mm for DHS + screw, 9.86 mm for FNS, and 9.31 mm for PFNA-II. The maximum implant VMS was 148.94 MPa for MCS, 414.66 MPa for DHS, 385.59 MPa for DSH + screw, 464.07 MPa for FNS, and 505.07 MPa for PFNA-II. The maximum VMS at the fracture site was 621.13 MPa for MCS, 464.14 MPa for DHS, 64.51 MPa for DHS + screw, 344.54 MPa for FNS, and 647.49 MPa for PFNA-II. The maximum VMS at the fracture site was in the superior area with the high point around the posterior screw in the MCS, anterosuperior corner in the DHS, the posteroinferior site of the FNS, and posterosuperior site around the entry point in the PFNA-II. In the DHS + screw, the stresses were distributed evenly and disappeared at the maximum VMS fracture site. Conclusion: Based on the fracture site and implant's stress distribution, the model receiving the optimal load was a DHS + screw construct, and the FNS implant could be applied to anatomically reduced fractures without comminution. Considering the high-stress concentration around the entry point, a PFNA-II fixation has a high probability of head-neck fragment rotational instability.
AB - Objective: This present study was conducted to determine the structural-mechanical stability of various fixation constructs through finite element (FE) analysis following simulation of a basicervical fracture and to introduce the clinical implications. Materials and Methods: We simulated fracture models by using a right synthetic femur (SAWBONES®). We imported the implant models into ANSYS® for placement in an optimal position. Five assembly models were constructed: (1) multiple cancellous screws (MCS), (2) FNS (femoral neck system®), (3) dynamic hip screw (DHS), (4) DHS with anti-rotation 7.0 screw (DHS + screw), and PFNA-II (Proximal Femoral Nail Antirotation-II®). The femur model's distal end was completely fixed and 7° abducted. We set the force vector at a 3° angle laterally and 15° posteriorly from the vertical ground. Analysis was done using Ansys® software with von Mises stress (VMS) in megapascals (MPa) and displacement (mm) Results: The displacements of the proximal femur were 10.25 mm for MCS, 9.66 mm for DHS, 9.44 mm for DHS + screw, 9.86 mm for FNS, and 9.31 mm for PFNA-II. The maximum implant VMS was 148.94 MPa for MCS, 414.66 MPa for DHS, 385.59 MPa for DSH + screw, 464.07 MPa for FNS, and 505.07 MPa for PFNA-II. The maximum VMS at the fracture site was 621.13 MPa for MCS, 464.14 MPa for DHS, 64.51 MPa for DHS + screw, 344.54 MPa for FNS, and 647.49 MPa for PFNA-II. The maximum VMS at the fracture site was in the superior area with the high point around the posterior screw in the MCS, anterosuperior corner in the DHS, the posteroinferior site of the FNS, and posterosuperior site around the entry point in the PFNA-II. In the DHS + screw, the stresses were distributed evenly and disappeared at the maximum VMS fracture site. Conclusion: Based on the fracture site and implant's stress distribution, the model receiving the optimal load was a DHS + screw construct, and the FNS implant could be applied to anatomically reduced fractures without comminution. Considering the high-stress concentration around the entry point, a PFNA-II fixation has a high probability of head-neck fragment rotational instability.
KW - Basicervical fracture
KW - Finite element analysis
KW - Internal fixation
KW - Proximal femur
UR - http://www.scopus.com/inward/record.url?scp=85144391099&partnerID=8YFLogxK
U2 - 10.1016/j.injury.2022.12.004
DO - 10.1016/j.injury.2022.12.004
M3 - Article
C2 - 36529550
AN - SCOPUS:85144391099
SN - 0020-1383
VL - 54
SP - 370
EP - 378
JO - Injury
JF - Injury
IS - 2
ER -