TY - JOUR
T1 - Studies with the human cohesin establishment factor, ChlR1
T2 - Association of ChlR1 with Ctf18-RFC and Fen1
AU - Farina, Andrea
AU - Shin, Jae Ho
AU - Kim, Do Hyung
AU - Bermudez, Vladimir P.
AU - Kelman, Zvi
AU - Seo, Yeon Soo
AU - Hurwitz, Jerard
PY - 2008/7/25
Y1 - 2008/7/25
N2 - Human ChlR1 (hChlR1), a member of the DEAD/DEAH subfamily of helicases, was shown to interact with components of the cohesin complex and play a role in sister chromatid cohesion. In order to study the biochemical and biological properties of hChlR1, we purified the protein from 293 cells and demonstrated that hChlR1 possesses DNA-dependent ATPase and helicase activities. This helicase translocates on single-stranded DNA in the 5′ to 3′ direction in the presence of ATP and, to a lesser extent, dATP. Its unwinding activity requires a 5′-single-stranded region for helicase loading, since flush-ended duplex structures do not support unwinding. The helicase activity of hChlR1 is capable of displacing duplex regions up to 100 bp, which can be extended to 500 bp by RPA or the cohesion establishment factor, the Ctf18-RFC (replication factor C) complex. We show that hChlR1 interacts with the hCtf18-RFC complex, human proliferating cell nuclear antigen, and hFen1. The interactions between Fen1 and hChlR1 stimulate the flap endonuclease activity of Fen1. Selective depletion of either hChlR1 or Fen1 by targeted small interfering RNA treatment results in the precocious separation of sister chromatids. These findings are consistent with a role of hChlR1 in the establishment of sister chromatid cohesion and suggest that its action may contribute to lagging strand processing events important in cohesion.
AB - Human ChlR1 (hChlR1), a member of the DEAD/DEAH subfamily of helicases, was shown to interact with components of the cohesin complex and play a role in sister chromatid cohesion. In order to study the biochemical and biological properties of hChlR1, we purified the protein from 293 cells and demonstrated that hChlR1 possesses DNA-dependent ATPase and helicase activities. This helicase translocates on single-stranded DNA in the 5′ to 3′ direction in the presence of ATP and, to a lesser extent, dATP. Its unwinding activity requires a 5′-single-stranded region for helicase loading, since flush-ended duplex structures do not support unwinding. The helicase activity of hChlR1 is capable of displacing duplex regions up to 100 bp, which can be extended to 500 bp by RPA or the cohesion establishment factor, the Ctf18-RFC (replication factor C) complex. We show that hChlR1 interacts with the hCtf18-RFC complex, human proliferating cell nuclear antigen, and hFen1. The interactions between Fen1 and hChlR1 stimulate the flap endonuclease activity of Fen1. Selective depletion of either hChlR1 or Fen1 by targeted small interfering RNA treatment results in the precocious separation of sister chromatids. These findings are consistent with a role of hChlR1 in the establishment of sister chromatid cohesion and suggest that its action may contribute to lagging strand processing events important in cohesion.
UR - http://www.scopus.com/inward/record.url?scp=51049121966&partnerID=8YFLogxK
U2 - 10.1074/jbc.M802696200
DO - 10.1074/jbc.M802696200
M3 - Article
C2 - 18499658
AN - SCOPUS:51049121966
SN - 0021-9258
VL - 283
SP - 20925
EP - 20936
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 30
ER -