Subdivisional spaces and graph braid groups

Byung Hee An, Gabriel C. Drummond-Cole, Ben Knudsen

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

We study the problem of computing the homology of the configuration spaces of a finite cell complex X. We proceed by viewing X, together with its subdivisions, as a subdivisional space-a kind of diagram object in a category of cell complexes. After developing a version of Morse theory for subdivisional spaces, we decompose X and show that the homology of the configuration spaces of X is computed by the derived tensor product of the Morse complexes of the pieces of the decomposition, an analogue of the monoidal excision property of factorization homology. Applying this theory to the configuration spaces of a graph, we recover a cellular chain model due toŚwiatkowski. Our method of deriving this model enhances it with various convenient functorialities, exact sequences, and module structures, which we exploit in numerous computations, old and new.

Original languageEnglish
Pages (from-to)1513-1583
Number of pages71
JournalDocumenta Mathematica
Volume24
DOIs
StatePublished - 2019

Keywords

  • Braid groups
  • Cell complexes
  • Configuration spaces
  • Graphs
  • Subdivisional spaces

Fingerprint

Dive into the research topics of 'Subdivisional spaces and graph braid groups'. Together they form a unique fingerprint.

Cite this