Substance P stimulates proliferation of spinal neural stem cells in spinal cord injury via the mitogen-activated protein kinase signaling pathway

Kyoung Tae Kim, Hye Jeong Kim, Dae Chul Cho, Jae Sung Bae, Seung Won Park

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Background context Substance P (SP) is a neuropeptide that can influence neural stem/progenitor cell (NSPC) proliferation and neurogenesis in the brain. However, we could not find any experimental study that investigates SP action in the spinal cord. Purpose The aims of our study were to investigate the potential of the neuropeptide SP in promoting the proliferation of spinal cord-derived NSPCs (SC-NSPCs) after spinal cord injury (SCI) and to clarify the roles of the mitogen-activated protein (MAP) kinase signaling pathway in the process. Study design This is a randomized animal study. Methods The SC-NSPCs were suspended in 100 μL of a neurobasal medium containing SP (binds neurokinin-1 receptor [NK1R]) or L-703,606 (NK1R antagonist) and cultured in a 96-well plate for 5 days. A cell proliferation assay was performed using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. A cord clipping method was used for the SCI model. Substance P and the NK1R antagonist (L-703,606) were infused intrathecally in SCI and sham models. Neural stem/progenitor cell proliferation was evaluated with immunostaining for bromodeoxyuridine (BrdU) and the immature neural marker nestin. An immunoblotting method was used for evaluating the MAP kinase signaling protein that contains extracellular signal-regulated kinases (ERKs and p38) and β-actin as the control group. Results In vitro, SP (0.01-10 μmol/L) increased the proliferation of cultured SC-NSPCs, with a peak increase of 35±2% at the 0.1 μmol/L concentration. Substance P of 0.1 μmol/L continuously increased SC-NSPC proliferation from 6 hours to 5 days, whereas the proliferation decreased from 18% to 98% with L-703,606 (1-10 μM). Intrathecal infusion of SP (1 μmol/L) for 7 days significantly increased the number of proliferating NPSCs (cells positive for both BrdU and nestin) in the spinal cord (by 120±17%, p<.05) in adult rats, but infusion of L-703,606 (10 μmol/L) significantly decreased the post-SCI induction of NPSC proliferation in the spinal cord (by 87±4%). Also, SP stimulates proliferation of SC-NSPCs via the MAP kinase signaling pathway, especially the phosphorylated ERK and phosphorylated p38 proteins. The phosphorylated ERK and phosphorylated p38 protein levels increased with SP (0.1 μmol/L, p<.05). Conclusions These data indicate that SP can promote proliferation of SC-NSPCs in SCI and normal conditions and have important roles in neuronal regeneration after SCI. Also, ERKs and p38 MAP kinases are important signaling proteins in this process.

Original languageEnglish
Pages (from-to)2055-2065
Number of pages11
JournalSpine Journal
Volume15
Issue number9
DOIs
StatePublished - 1 Sep 2015

Keywords

  • ERK
  • Mitogen-activated protein kinase signaling pathway
  • Neural stem/progenitor cell
  • Neuronal regeneration
  • p38
  • Spinal cord injury
  • Substance P

Fingerprint

Dive into the research topics of 'Substance P stimulates proliferation of spinal neural stem cells in spinal cord injury via the mitogen-activated protein kinase signaling pathway'. Together they form a unique fingerprint.

Cite this