Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: Involvement of the MAPK, NF-κB and AP-1 signaling pathways

Ji Yun Kim, Hye Jin Park, Sung Hee Um, Eun Hwa Sohn, Byung Oh Kim, Eun Yi Moon, Dong Kwon Rhee, Suhkneung Pyo

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Atherosclerosis is a long-term inflammatory disease of the arterial wall. Increased expression of the cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) is associated with increased proliferation of vascular smooth muscle cells (VSMCs), leading to increased neointima or atherosclerotic lesion formation. Therefore, the functional inhibition of adhesion molecules could be a critical therapeutic target of inflammatory disease. In the present study, we investigate the effect of sulforaphane on the expression of VCAM-1 induced by TNF-α in cultured mouse vascular smooth muscle cell lines. Pretreatment of VSMCs for 2. h with sulforaphane (1-5 μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of VCAM-1. Sulforaphane also suppressed TNF-α-induced production of intracellular reactive oxygen species (ROS) and activation of p38, ERK and JNK. Furthermore, sulforaphane inhibited NK-κB and AP-1 activation induced by TNF-α. Sulforaphane inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα and nuclear translocation of p65 NF-κB and decreased c-Jun and c-Fos protein level. This study suggests that sulforaphane inhibits the adhesive capacity of VSMC and downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the MAPK, NF-κB and AP-1 signaling pathways and intracellular ROS production. Thus, sulforaphane may have beneficial effects to suppress inflammation within the atherosclerotic lesion.

Original languageEnglish
Pages (from-to)131-141
Number of pages11
JournalVascular Pharmacology
Volume56
Issue number3-4
DOIs
StatePublished - Mar 2012

Keywords

  • Anti-inflammatory effect
  • AP-1
  • MAPK
  • NF-κB
  • Sulforaphane
  • Vascular cell adhesion molecule

Fingerprint

Dive into the research topics of 'Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: Involvement of the MAPK, NF-κB and AP-1 signaling pathways'. Together they form a unique fingerprint.

Cite this