TY - JOUR
T1 - Synergistic interaction and controllable active sites of nitrogen and sulfur co-doping into mesoporous carbon sphere for high performance oxygen reduction electrocatalysts
AU - Oh, Taeseob
AU - Kim, Myeongjin
AU - Park, Dabin
AU - Kim, Jooheon
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/5/15
Y1 - 2018/5/15
N2 - Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.
AB - Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.
KW - Mesoporous carbon sphere
KW - Metal-free electrocatalyst
KW - Nitrogen and sulfur co-doping
KW - Oxygen reduction reaction
KW - Synergistic effect
UR - http://www.scopus.com/inward/record.url?scp=85041398623&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2018.01.186
DO - 10.1016/j.apsusc.2018.01.186
M3 - Article
AN - SCOPUS:85041398623
SN - 0169-4332
VL - 440
SP - 627
EP - 636
JO - Applied Surface Science
JF - Applied Surface Science
ER -