TY - JOUR
T1 - Synthesis and characterization of defective UiO-66 for efficient co-immobilization of arsenate and fluoride from single/binary solutions
AU - Prabhu, Subbaiah Muthu
AU - Chuaicham, Chitiphon
AU - Park, Chang Min
AU - Jeon, Byoung Hun
AU - Sasaki, Keiko
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/6/1
Y1 - 2021/6/1
N2 - Here, we aimed to synthesize UiO-66 architected fumaric acid mediated lanthanum (La-fum), zirconium (Zr-fum), and cerium (Ce-fum) metal-organic frameworks (MOFs) for co-immobilizations of both arsenate and fluoride from both single and binary systems. The crystalline behavior of Zr-fum MOF was the lowest compared to the other two forms, due to the fact that it required a modulator support as the nucleus growth nature of zirconium moiety is different. The Langmuir maximum adsorption densities of arsenate (fluoride) were 2.689 (4.240), 1.666 (2.255), and 2.174 (4.155) mmol/g for La-fum, Zr-fum, and Ce-fum, respectively and these adsorption densities were found to have record-high values compared with the existing materials in the literature. The arsenate and fluoride adsorption on the MOF materials were confirmed by XPS, PXRD and FTIR studies. The arsenate adsorption mechanism on La-fum and Ce-fum through monodentate complexation confirmed using the distinguished K-edge shell distance in EXAFS studies. The arsenate and fluoride-sorbed materials were recycled using 0.01 M HNO3 and were further utilized for six consecutive cycles for both arsenate and fluoride adsorption indicated the feasibility of the materials. This kind of facile and easy solvothermal synthesized MOFs could pave a way towards the removal of toxins in a practical wastewater as these have superior adsorption properties, stability and reusability.
AB - Here, we aimed to synthesize UiO-66 architected fumaric acid mediated lanthanum (La-fum), zirconium (Zr-fum), and cerium (Ce-fum) metal-organic frameworks (MOFs) for co-immobilizations of both arsenate and fluoride from both single and binary systems. The crystalline behavior of Zr-fum MOF was the lowest compared to the other two forms, due to the fact that it required a modulator support as the nucleus growth nature of zirconium moiety is different. The Langmuir maximum adsorption densities of arsenate (fluoride) were 2.689 (4.240), 1.666 (2.255), and 2.174 (4.155) mmol/g for La-fum, Zr-fum, and Ce-fum, respectively and these adsorption densities were found to have record-high values compared with the existing materials in the literature. The arsenate and fluoride adsorption on the MOF materials were confirmed by XPS, PXRD and FTIR studies. The arsenate adsorption mechanism on La-fum and Ce-fum through monodentate complexation confirmed using the distinguished K-edge shell distance in EXAFS studies. The arsenate and fluoride-sorbed materials were recycled using 0.01 M HNO3 and were further utilized for six consecutive cycles for both arsenate and fluoride adsorption indicated the feasibility of the materials. This kind of facile and easy solvothermal synthesized MOFs could pave a way towards the removal of toxins in a practical wastewater as these have superior adsorption properties, stability and reusability.
KW - Arsenic-fluoride
KW - EXAFS study
KW - Metal-organic frameworks
KW - Single/binary system
UR - http://www.scopus.com/inward/record.url?scp=85102515886&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2021.116841
DO - 10.1016/j.envpol.2021.116841
M3 - Article
C2 - 33735792
AN - SCOPUS:85102515886
SN - 0269-7491
VL - 278
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 116841
ER -