TY - JOUR
T1 - Synthesis and characterization of lanthanum-based metal organic framework decorated polyaniline for effective adsorption of lead ions from aqueous solutions
AU - Govarthanan, M.
AU - Jeon, Chang Hyun
AU - Kim, Woong
N1 - Publisher Copyright:
© 2022
PY - 2022/6/15
Y1 - 2022/6/15
N2 - The novel La-MOF@x%PANI composite was synthesized via a two-step procedure with ultra-sonication, and the adsorption mechanism of Pb2+ ions from synthetic aqueous solutions was systematically studied. The Pb2+ adsorption on the La-MOF@x%PANI was evaluated by the Fourier transform infrared spectroscopy, powder X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray analysis, Brunauer–Emmett–Teller analysis, X-ray photoelectron spectroscopy, and elemental mapping analyses. The effects of the adsorption-influencing parameters, including contact time, solution pH, and co-existing cations on the maximum adsorption capacity of Pb2+ onto the prepared composite material were investigated. Moreover, the adsorption of Pb2+ ions could be eliminated with rapid adsorption kinetics using the water-stable La-MOF@x%PANI composite. The as-synthesized La-MOF@50%PANI exhibited excellent adsorption performance toward Pb2+ ions with an extraordinary adsorption capacity of 185.19 mg/g at pH 6. The Pb2+ adsorption onto the La-MOF@x%PANI composite follows the pseudo-second-order kinetics and fits well with the Langmuir isotherm model, indicating the Pb2+ adsorption depended on the solution pH as the adsorption mechanism was mainly governed by the electrostatic attraction. Notably, La-MOF@x%PANI composite possesses outstanding regeneration ability and stability after up to four successive cycles. The satisfactory findings reflect that the La-MOF@50%PANI hybrid composite holds a great promise for remediating Pb2+ ions from aqueous environments.
AB - The novel La-MOF@x%PANI composite was synthesized via a two-step procedure with ultra-sonication, and the adsorption mechanism of Pb2+ ions from synthetic aqueous solutions was systematically studied. The Pb2+ adsorption on the La-MOF@x%PANI was evaluated by the Fourier transform infrared spectroscopy, powder X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray analysis, Brunauer–Emmett–Teller analysis, X-ray photoelectron spectroscopy, and elemental mapping analyses. The effects of the adsorption-influencing parameters, including contact time, solution pH, and co-existing cations on the maximum adsorption capacity of Pb2+ onto the prepared composite material were investigated. Moreover, the adsorption of Pb2+ ions could be eliminated with rapid adsorption kinetics using the water-stable La-MOF@x%PANI composite. The as-synthesized La-MOF@50%PANI exhibited excellent adsorption performance toward Pb2+ ions with an extraordinary adsorption capacity of 185.19 mg/g at pH 6. The Pb2+ adsorption onto the La-MOF@x%PANI composite follows the pseudo-second-order kinetics and fits well with the Langmuir isotherm model, indicating the Pb2+ adsorption depended on the solution pH as the adsorption mechanism was mainly governed by the electrostatic attraction. Notably, La-MOF@x%PANI composite possesses outstanding regeneration ability and stability after up to four successive cycles. The satisfactory findings reflect that the La-MOF@50%PANI hybrid composite holds a great promise for remediating Pb2+ ions from aqueous environments.
KW - Adsorption
KW - Lanthanum
KW - Lead
KW - Metal-organic framework
KW - Polyaniline
UR - http://www.scopus.com/inward/record.url?scp=85126089535&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2022.119049
DO - 10.1016/j.envpol.2022.119049
M3 - Article
C2 - 35271953
AN - SCOPUS:85126089535
SN - 0269-7491
VL - 303
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 119049
ER -