Abstract
Stretchable fluorescent conjugated polymers were synthesized by copolymerization of diphenylacetylene derivative (DPAmC18) and di-functional 1,4-bis[phenylethynyl]benzene (PEB) using as a monomer and a cross-linker, respectively, in different feed ratios and their properties were investigated. The compositional ratios of the polymers were confirmed by FTIR spectroscopy and their thermodynamic/structural/optical properties were evaluated and compared by XRD, DSC, UV-vis absorption and fluorescence (FL) emission spectroscopic analyses. The thermodynamic/structural feature of the homopolymer, PDPAmC18, varied gradually according to the amount of PEB in the polymers while the FL emission was almost not changed. As a result of UTM measurement at room temperature, the polymer having a 10% feed ratio of PEB showed the most reversible stretchability in a tensile strain range from 70% to 100% and, simultaneously, the FL and polarized FL emission were changed reversibly. These results suggest a potential application of our polymers using as a FL tension sensor.
Original language | English |
---|---|
Pages (from-to) | 736-743 |
Number of pages | 8 |
Journal | Polymer (Korea) |
Volume | 40 |
Issue number | 5 |
DOIs | |
State | Published - Sep 2016 |
Keywords
- Conjugated polymer
- Cross-linker
- Fluorescence
- Stretchable polymer
- Tension sensor