Abstract
In this study, we report the synthesis and characterization of 3,5-Diiodo-L-tyrosine (DLT)-coated gadolinium oxide (Gd2O3) nanoparticles. The bonding status of DLT-coated Gd2O3 nanoparticles (DLT-NPs) were confirmed by Fourier transform infrared (FT-IR) absorption spectra and thermogravimetric analysis (TGA). The surface coating amount was estimated to be 73% in weight percent from a TGA. High-resolution transmission electron microscope (HR-TEM) shows that DLT-NPs were spherical in shape with an average diameter 2 nm. The MR relaxivity measurements confirmed that the DLT-NPs have higher r1 = 9.24 s-1 mM-1 than commercially available contrast agents. Furthermore, the bio-compatibility of the DLT-NPs were measured by cytotoxicity test, which has demonstrated that the cell viability reached up to 60% with Gd concentrations up to 50 μM for both DU145 and NCTC1469 cell lines, making them a promising candidate for biomedical applications.
Original language | English |
---|---|
Pages (from-to) | 179-185 |
Number of pages | 7 |
Journal | BioNanoScience |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - 15 Mar 2019 |
Keywords
- 3,5-Diiodo-L-tyrosine
- Cytotoxicity
- GdO nanoparticles
- Relaxivities