Tailoring Photoelectrochemical Performance and Stability of Cu(In,Ga)Se2 Photocathode via TiO2-Coupled Buffer Layers

Bonhyeong Koo, Sung Wook Nam, Richard Haight, Suncheul Kim, Seungtaeg Oh, Minhyung Cho, Jihun Oh, Jeong Yong Lee, Byung Tae Ahn, Byungha Shin

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

We report on the photoelectrochemical (PEC) performance and stability of Cu(In,Ga)Se2 (CIGS)-based photocathodes for photocatalytic hydrogen evolution from water. Various functional overlayers, such as CdS, TiO2, ZnxSnyOz, and a combination of the aforementioned, were applied on the CIGS to improve the performance and stability. We identified that the insertion of TiO2 overlayer on p-CIGS/n-buffer layers significantly improves the PEC performance. A multilayered photocathode consisting of CIGS/CdS/TiO2/Pt exhibited the best current-potential characteristics among the tested photocathodes, which demonstrates a power-saved efficiency of 2.63%. However, repeated linear sweep voltammetry resulted in degradation of performance. In this regard, we focused on the PEC durability issues through in-depth chemical characterization that revealed the degradation was attributed to atomic redistribution of elements constituting the photocathode, namely, in-diffusion of Pt catalysts, out-diffusion of elements from the CIGS, and removal of the metal-oxide layers; the best-performing CIGS/CdS/TiO2/Pt photocathode retained its initial performance until the TiO2 overlayer was removed. It was also found that the durability of CIGS photocathodes with a TiO2-coated metal-oxide buffer layer such as ZnxSnyOz was better than those with a TiO2-coated CdS, and the degradation mechanism was different, suggesting that the stability of a CIGS-based photocathode can be improved by careful design of the structure.

Original languageEnglish
Pages (from-to)5279-5287
Number of pages9
JournalACS applied materials & interfaces
Volume9
Issue number6
DOIs
StatePublished - 15 Feb 2017

Keywords

  • Cu(In,Ga)Se photocathode
  • overlayer
  • photoelectrochemical hydrogen evolution
  • solar water splitting
  • stability

Fingerprint

Dive into the research topics of 'Tailoring Photoelectrochemical Performance and Stability of Cu(In,Ga)Se2 Photocathode via TiO2-Coupled Buffer Layers'. Together they form a unique fingerprint.

Cite this