Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model

So Mi Kim, In Koo Hwang, Dae Young Yoo, Won Sik Eum, Dae Won Kim, Min Jea Shin, Eun Hee Ahn, Hyo Sang Jo, Eun Ji Ryu, Ji In Yong, Sung Woo Cho, Oh Shin Kwon, Keun Wook Lee, Yoon Shin Cho, Kyu Hyung Han, Jinseu Park, Soo Young Choi

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat-Atox1 and examined the roles of Tat-Atox1 in oxidative stress-induced hippocampal HT-22 cell death and an ischaemic injury animal model. Tat-Atox1 effectively transduced into HT-22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)-induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat-Atox1 regulated cellular survival signalling such as p53, Bad/Bcl-2, Akt and mitogen-activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat-Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat-Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat-Atox1 protects against oxidative stress-induced HT-22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat-Atox1 has potential as a therapeutic agent for the treatment of oxidative stress-induced ischaemic damage.

Original languageEnglish
Pages (from-to)1333-1345
Number of pages13
JournalJournal of Cellular and Molecular Medicine
Volume19
Issue number6
DOIs
StatePublished - 1 Jun 2015

Keywords

  • Ischaemic injury
  • Oxidative stress
  • Protein therapy
  • Protein transduction domain
  • Tat-Atox1

Fingerprint

Dive into the research topics of 'Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model'. Together they form a unique fingerprint.

Cite this