Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury

Min Jea Shin, Dae Won Kim, Yeom Pyo Lee, Eun Hee Ahn, Hyo Sang Jo, Duk Soo Kim, Oh Shin Kwon, Tae Cheon Kang, Yong Jun Cho, Jinseu Park, Won Sik Eum, Soo Young Choi

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

Methylglyoxal (MG), a metabolite of glucose, is the major precursor of protein glycation and induces apoptosis. MG is associated with neurodegeneration, including oxidative stress and impaired glucose metabolism, and is efficiently metabolized to S-D-lactoylglutathione by glyoxalase (GLO). Although GLO has been implicated as being crucial in various diseases including ischemia, its detailed functions remain unclear. Therefore, we investigated the protective effect of GLO (GLO1 and GLO2) in neuronal cells and an animal ischemia model using Tat-GLO proteins. Purified Tat-GLO protein efficiently transduced into HT-22 neuronal cells and protected cells against MG- and H 2O2-induced cell death, DNA fragmentation, and activation of caspase-3 and mitogen-activated protein kinase. In addition, transduced Tat-GLO protein increased D-lactate in MG- and H2O 2-treated cells whereas glycation end products (AGE) and MG levels were significantly reduced in the same cells. Gerbils treated with Tat-GLO proteins displayed delayed neuronal cell death in the CA1 region of the hippocampus compared with a control. Furthermore, the combined neuroprotective effects of Tat-GLO1 and Tat-GLO2 proteins against ischemic damage were significantly higher than those of each individual protein. Those results demonstrate that transduced Tat-GLO protein protects neuronal cells by inhibiting MG- and H2O2-mediated cytotoxicity in vitro and in vivo. Therefore, we suggest that Tat-GLO proteins could be useful as a therapeutic agent for various human diseases related to oxidative stress including brain diseases.

Original languageEnglish
Pages (from-to)195-210
Number of pages16
JournalFree Radical Biology and Medicine
Volume67
DOIs
StatePublished - 2014

Keywords

  • Glyoxalase (GLO)
  • Ischemic damage
  • Methylglyoxal (MG)
  • Oxidative stress
  • Protein therapy

Fingerprint

Dive into the research topics of 'Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury'. Together they form a unique fingerprint.

Cite this