TY - JOUR
T1 - Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K
AU - Oi, Naomi
AU - Chen, Hanyong
AU - Kim, Myoung Ok
AU - Lubet, Ronald A.
AU - Bode, Ann M.
AU - Dong, Zigang
PY - 2012/9
Y1 - 2012/9
N2 - Skin cancer is one of the most commonly diagnosed cancers in the United States. Taxifolin reportedly exerts multiple biologic effects, but the molecular mechanisms and direct target(s) of taxifolin in skin cancer chemoprevention are still unknown. In silico computer screening and kinase profiling results suggest that the EGF receptor (EGFR), phosphoinositide 3-kinase (PI3K), and Src are potential targets for taxifolin. Pull-down assay results showed that EGFR, PI3K, and Src directly interacted with taxifolin in vitro, whereas taxifolin bound to EGFR and PI3K, but not to Src in cells. ATP competition and in vitro kinase assay data revealed that taxifolin interacted with EGFR and PI3K at the ATP-binding pocket and inhibited their kinase activities. Western blot analysis showed that taxifolin suppressed UVB-induced phosphorylation of EGFR and Akt, and subsequently suppressed their signaling pathways in JB6 P+ mouse skin epidermal cells. Expression levels and promoter activity of COX-2 and prostaglandin E2(PGE2) generation induced by UVB were also attenuated by taxifolin. The effect of taxifolin on UVB-induced signaling pathways and PGE2 generation was reduced in EGFR knockout murine embryonic fibroblasts (MEF) compared with EGFR wild-type MEFs. Taxifolin also inhibited EGF-induced cell transformation. Importantly, topical treatment of taxifolin to the dorsal skin significantly suppressed tumor incidence, volume, and multiplicity in a solar UV (SUV)-induced skin carcinogenesis mouse model. Further analysis showed that the taxifolin-treated group had a substantial reduction in SUV-induced phosphorylation of EGFR and Akt in mouse skin. These results suggest that taxifolin exerts chemopreventive activity against UV-induced skin carcinogenesis by targeting EGFR and PI3K.
AB - Skin cancer is one of the most commonly diagnosed cancers in the United States. Taxifolin reportedly exerts multiple biologic effects, but the molecular mechanisms and direct target(s) of taxifolin in skin cancer chemoprevention are still unknown. In silico computer screening and kinase profiling results suggest that the EGF receptor (EGFR), phosphoinositide 3-kinase (PI3K), and Src are potential targets for taxifolin. Pull-down assay results showed that EGFR, PI3K, and Src directly interacted with taxifolin in vitro, whereas taxifolin bound to EGFR and PI3K, but not to Src in cells. ATP competition and in vitro kinase assay data revealed that taxifolin interacted with EGFR and PI3K at the ATP-binding pocket and inhibited their kinase activities. Western blot analysis showed that taxifolin suppressed UVB-induced phosphorylation of EGFR and Akt, and subsequently suppressed their signaling pathways in JB6 P+ mouse skin epidermal cells. Expression levels and promoter activity of COX-2 and prostaglandin E2(PGE2) generation induced by UVB were also attenuated by taxifolin. The effect of taxifolin on UVB-induced signaling pathways and PGE2 generation was reduced in EGFR knockout murine embryonic fibroblasts (MEF) compared with EGFR wild-type MEFs. Taxifolin also inhibited EGF-induced cell transformation. Importantly, topical treatment of taxifolin to the dorsal skin significantly suppressed tumor incidence, volume, and multiplicity in a solar UV (SUV)-induced skin carcinogenesis mouse model. Further analysis showed that the taxifolin-treated group had a substantial reduction in SUV-induced phosphorylation of EGFR and Akt in mouse skin. These results suggest that taxifolin exerts chemopreventive activity against UV-induced skin carcinogenesis by targeting EGFR and PI3K.
UR - http://www.scopus.com/inward/record.url?scp=84866181167&partnerID=8YFLogxK
U2 - 10.1158/1940-6207.CAPR-11-0397
DO - 10.1158/1940-6207.CAPR-11-0397
M3 - Article
C2 - 22805054
AN - SCOPUS:84866181167
SN - 1940-6207
VL - 5
SP - 1103
EP - 1114
JO - Cancer Prevention Research
JF - Cancer Prevention Research
IS - 9
ER -