TY - JOUR
T1 - Temperature- and pH-induced dual-crosslinked methylcellulose/chitosan-gallol conjugate composite hydrogels with improved mechanical, tissue adhesive, and hemostatic properties
AU - Hwang, Sun Min
AU - Kim, Eunu
AU - Wu, Jingxian
AU - Kim, Min Hee
AU - Lee, Haeshin
AU - Park, Won Ho
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/10
Y1 - 2024/10
N2 - Gauze or bandages are commonly used to effectively control bleeding during trauma and surgery. However, conventional treatment methods can sometimes lead to secondary damages. In recent years, there has been increased interest in developing adhesive hemostatic hydrogels as a safer alternative for achieving hemostasis. Methylcellulose (MC) is a well-known thermo-sensitive polymer with excellent biocompatibility that is capable of forming a hydrogel through physical crosslinking owing to its inherent thermo-reversible properties. However, the poor mechanical properties of the MC hydrogel comprising a single crosslinked network (SN) limit its application as a hemostatic material. To address this issue, we incorporated a chitosan-gallol (CS-GA) conjugate, which has the ability to form chemical crosslinks through self-crosslinking reactions under specific pH conditions, into the MC hydrogel to reinforce the MC hydrogel network. The resulting MC/CS-GA hydrogel with a dual-crosslinked network (DN), involving both physical and chemical crosslinks, exhibited synergistic effects of the two types of crosslinks. Thus, compared with those of the SN hydrogel, the composite DN hydrogel exhibited significantly enhanced mechanical strength and tissue adhesive properties. Moreover, the DN hydrogel presented excellent biological activity in vitro. Additionally, in rat hepatic hemorrhage models, the DN hydrogel exhibited high hemostatic efficiency, showcasing its multifunctional capabilities.
AB - Gauze or bandages are commonly used to effectively control bleeding during trauma and surgery. However, conventional treatment methods can sometimes lead to secondary damages. In recent years, there has been increased interest in developing adhesive hemostatic hydrogels as a safer alternative for achieving hemostasis. Methylcellulose (MC) is a well-known thermo-sensitive polymer with excellent biocompatibility that is capable of forming a hydrogel through physical crosslinking owing to its inherent thermo-reversible properties. However, the poor mechanical properties of the MC hydrogel comprising a single crosslinked network (SN) limit its application as a hemostatic material. To address this issue, we incorporated a chitosan-gallol (CS-GA) conjugate, which has the ability to form chemical crosslinks through self-crosslinking reactions under specific pH conditions, into the MC hydrogel to reinforce the MC hydrogel network. The resulting MC/CS-GA hydrogel with a dual-crosslinked network (DN), involving both physical and chemical crosslinks, exhibited synergistic effects of the two types of crosslinks. Thus, compared with those of the SN hydrogel, the composite DN hydrogel exhibited significantly enhanced mechanical strength and tissue adhesive properties. Moreover, the DN hydrogel presented excellent biological activity in vitro. Additionally, in rat hepatic hemorrhage models, the DN hydrogel exhibited high hemostatic efficiency, showcasing its multifunctional capabilities.
KW - Chitosan-gallol conjugate
KW - Dual-crosslinked hydrogel
KW - Tissue adhesive hemostasis
UR - http://www.scopus.com/inward/record.url?scp=85199270356&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2024.134098
DO - 10.1016/j.ijbiomac.2024.134098
M3 - Article
C2 - 39048009
AN - SCOPUS:85199270356
SN - 0141-8130
VL - 277
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 134098
ER -