TY - JOUR
T1 - The Cerebellar Cortex Receives Orofacial Proprioceptive Signals from the Supratrigeminal Nucleus via the Mossy Fiber Pathway in Rats
AU - Tsutsumi, Yumi
AU - Sato, Fumihiko
AU - Furuta, Takahiro
AU - Uchino, Katsuro
AU - Moritani, Masayuki
AU - Bae, Yong Chul
AU - Kato, Takafumi
AU - Tachibana, Yoshihisa
AU - Yoshida, Atsushi
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023/8
Y1 - 2023/8
N2 - Proprioceptive sensory information from muscle spindles is essential for the regulation of motor functions. However, little is known about the motor control regions in the cerebellar cortex that receive proprioceptive signals from muscle spindles distributed throughout the body, including the orofacial muscles. Therefore, in this study, we investigated the pattern of projections in the rat cerebellar cortex derived from the supratrigeminal nucleus (Su5), which conveys orofacial proprioceptive information from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 revealed that many bilateral axon terminals (rosettes) were distributed in the granular layer of the cerebellar cortex (including the simple lobule B, crus II and flocculus) in a various sized, multiple patchy pattern. We could also detect JCMS proprioceptive signals in these cerebellar cortical regions, revealing for the first time that they receive muscle proprioceptive inputs in rats. Retrograde tracer injections confirmed that the Su5 directly sends outputs to the cerebellar cortical areas. Furthermore, we injected an anterograde tracer into the external cuneate nucleus (ECu), which receives proprioceptive signals from the forelimb and neck muscle spindles, to distinguish between the Su5- and ECu-derived projections in the cerebellar cortex. The labeled terminals from the ECu were distributed predominantly in the vermis of the cerebellar cortex. Almost no overlap was seen in the terminal distributions of the Su5 and ECu projections. Our findings demonstrate that the rat cerebellar cortex receives orofacial proprioceptive input that is processed differently from the proprioceptive signals from the other regions of the body.
AB - Proprioceptive sensory information from muscle spindles is essential for the regulation of motor functions. However, little is known about the motor control regions in the cerebellar cortex that receive proprioceptive signals from muscle spindles distributed throughout the body, including the orofacial muscles. Therefore, in this study, we investigated the pattern of projections in the rat cerebellar cortex derived from the supratrigeminal nucleus (Su5), which conveys orofacial proprioceptive information from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 revealed that many bilateral axon terminals (rosettes) were distributed in the granular layer of the cerebellar cortex (including the simple lobule B, crus II and flocculus) in a various sized, multiple patchy pattern. We could also detect JCMS proprioceptive signals in these cerebellar cortical regions, revealing for the first time that they receive muscle proprioceptive inputs in rats. Retrograde tracer injections confirmed that the Su5 directly sends outputs to the cerebellar cortical areas. Furthermore, we injected an anterograde tracer into the external cuneate nucleus (ECu), which receives proprioceptive signals from the forelimb and neck muscle spindles, to distinguish between the Su5- and ECu-derived projections in the cerebellar cortex. The labeled terminals from the ECu were distributed predominantly in the vermis of the cerebellar cortex. Almost no overlap was seen in the terminal distributions of the Su5 and ECu projections. Our findings demonstrate that the rat cerebellar cortex receives orofacial proprioceptive input that is processed differently from the proprioceptive signals from the other regions of the body.
KW - Deep sensation
KW - Muscle spindle
KW - Precerebellar neurons
KW - Tract tracing
KW - Trigeminal
UR - http://www.scopus.com/inward/record.url?scp=85133295877&partnerID=8YFLogxK
U2 - 10.1007/s12311-022-01434-z
DO - 10.1007/s12311-022-01434-z
M3 - Article
C2 - 35781609
AN - SCOPUS:85133295877
SN - 1473-4222
VL - 22
SP - 663
EP - 679
JO - Cerebellum
JF - Cerebellum
IS - 4
ER -