TY - JOUR
T1 - The development and validation of the GI-ALE instructional model for the emerging collective intelligence of the scientifically gifted student
AU - Jeon, Kyunghee
AU - Park, Dahye
AU - Park, Jongseok
N1 - Publisher Copyright:
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
PY - 2019/3/1
Y1 - 2019/3/1
N2 - This research aims to develop an instructional model using advanced laboratory equipment (ALE) based on collective intelligence attributes that can be applied to the scientifically-gifted students. The developed GI-ALE model is defined by introducing the principles of the group investigation (GI) model to the existing ALE instructional model based on the factors of six types of collective intelligence: shared vision and value formation, knowledge in specific areas and diversity in those areas, knowledge sharing system, dynamism through decentralization and integration, and synergy effect. After deriving the learning design principles from the attributes of the six types of collective intelligence, the specific teaching and learning elements have been extracted. The GI-ALE model consists of seven steps: announcing learning goals, organizing groups and subtopics, preparing an experimental plan, preparing preliminary reports, the presentation of pre-report written in group unit, experimenting, creating report in group unit, and sharing and evaluating the outputs. It was applied to 76 students in a chemistry experiment lesson engaged in the second-grade curriculum at a Science High School. From qualitative data obtained after model application, this model helped students to acquire advanced scientific experimental skills and various types of knowledge. It has been also confirmed that the students experienced dynamic interactions and decentralized leadership as required by collective intelligence in the process of sharing and integrating professional experimental knowledge. In addition, the students had many opportunities for individual and collective reflection through open self-directed learning. By using one device on a variety of topics with their colleagues through group activities, they had the confidence to utilize it individually. The GI-ALE instructional model also helped scientifically-gifted students to deepen their scientific inquiry level. This model will encourage the gifted students to be able to explore the real world, to learn the attributes of collective intelligence, and to produce knowledge autonomously.
AB - This research aims to develop an instructional model using advanced laboratory equipment (ALE) based on collective intelligence attributes that can be applied to the scientifically-gifted students. The developed GI-ALE model is defined by introducing the principles of the group investigation (GI) model to the existing ALE instructional model based on the factors of six types of collective intelligence: shared vision and value formation, knowledge in specific areas and diversity in those areas, knowledge sharing system, dynamism through decentralization and integration, and synergy effect. After deriving the learning design principles from the attributes of the six types of collective intelligence, the specific teaching and learning elements have been extracted. The GI-ALE model consists of seven steps: announcing learning goals, organizing groups and subtopics, preparing an experimental plan, preparing preliminary reports, the presentation of pre-report written in group unit, experimenting, creating report in group unit, and sharing and evaluating the outputs. It was applied to 76 students in a chemistry experiment lesson engaged in the second-grade curriculum at a Science High School. From qualitative data obtained after model application, this model helped students to acquire advanced scientific experimental skills and various types of knowledge. It has been also confirmed that the students experienced dynamic interactions and decentralized leadership as required by collective intelligence in the process of sharing and integrating professional experimental knowledge. In addition, the students had many opportunities for individual and collective reflection through open self-directed learning. By using one device on a variety of topics with their colleagues through group activities, they had the confidence to utilize it individually. The GI-ALE instructional model also helped scientifically-gifted students to deepen their scientific inquiry level. This model will encourage the gifted students to be able to explore the real world, to learn the attributes of collective intelligence, and to produce knowledge autonomously.
KW - Advanced laboratory equipment
KW - Collective intelligence
KW - GI-ALE instructional model
KW - Group investigation
KW - Scientific inquiry
KW - Scientifically-gifted education
UR - http://www.scopus.com/inward/record.url?scp=85122760273&partnerID=8YFLogxK
U2 - 10.1186/s41029-019-0046-7
DO - 10.1186/s41029-019-0046-7
M3 - Article
AN - SCOPUS:85122760273
SN - 2364-1177
VL - 5
SP - 1
EP - 23
JO - Asia-Pacific Science Education
JF - Asia-Pacific Science Education
IS - 1
M1 - 18
ER -