The mass profile and shape of bars in the spitzer survey of stellar structure in galaxies (S4G): Search for an age indicator for bars

Taehyun Kim, Kartik Sheth, Dimitri A. Gadotti, Myung Gyoon Lee, Dennis Zaritsky, Bruce G. Elmegreen, E. Athanassoula, Albert Bosma, Benne Holwerda, Luis C. Ho, Sébastien Comerón, Johan H. Knapen, Joannah L. Hinz, Juan Carlos Muñoz-Mateos, Santiago Erroz-Ferrer, Ronald J. Buta, Minjin Kim, Eija Laurikainen, Heikki Salo, Barry F. MadoreJarkko Laine, Karín Menéndez-Delmestre, Michael W. Regan, Bonita De Swardt, Armando Gil De Paz, Mark Seibert, Trisha Mizusawa

Research output: Contribution to journalReview articlepeer-review

34 Scopus citations

Abstract

We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.

Original languageEnglish
Article number99
JournalAstrophysical Journal
Volume799
Issue number1
DOIs
StatePublished - 20 Jan 2015

Keywords

  • Galaxies: evolution
  • Galaxies: formation
  • Galaxies: spiral
  • Galaxies: structure

Fingerprint

Dive into the research topics of 'The mass profile and shape of bars in the spitzer survey of stellar structure in galaxies (S4G): Search for an age indicator for bars'. Together they form a unique fingerprint.

Cite this