Abstract
Calcium deposition in vascular smooth muscle cells (VSMCs) is a form of ectopic ossification in blood vessels. It can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that the microRNA miR-134-5p potentiates inorganic phosphate (Pi)-induced calcium deposition in VSMCs by inhibiting histone deacetylase 5 (HDAC5). Using miRNA microarray analysis of Pi-treated rat VSMCs, we first selected miR-134-5p for further evaluation. Quantitative RT-PCR confirmed that miR-134-5p was increased in Pi-treated A10 cells, a rat VSMC line. Transfection of miR-134-5p mimic potentiated the Pi-induced increase in calcium contents. miR-134-5p increased the amounts of bone runt-related transcription factor 2 (RUNX2) protein and bone morphogenic protein 2 (BMP2) mRNA in the presence of Pi but decreased the expression of osteoprotegerin (OPG). Bioinformatic analysis showed that the HDAC5 3′untranslated region (3′UTR) was one of the targets of miR-134-5p. The luciferase construct containing the 3′UTR of HDAC5 was down-regulated by miR-134-5p mimic in a dose-dependent manner in VSMCs. Overexpression of HDAC5 mitigated the calcium deposition induced by miR-134-5p. Our results suggest that a Pi-induced increase of miR-134-5p may cause vascular calcification through repression of HDAC5.
Original language | English |
---|---|
Pages (from-to) | 10542-10550 |
Number of pages | 9 |
Journal | Journal of Cellular and Molecular Medicine |
Volume | 24 |
Issue number | 18 |
DOIs | |
State | Published - 1 Sep 2020 |
Keywords
- histone deacetylase 5
- microRNA
- miR-134-5p
- vascular calcification
- vascular smooth muscle cells