TY - JOUR
T1 - THE NORMING SETS OF L(2 l21) and Ls (2 l31)
AU - Kim, Sung Guen
N1 - Publisher Copyright:
© 2022, Transilvania University of Brasov 1. All rights reserved.
PY - 2022/12/29
Y1 - 2022/12/29
N2 - Let n ∈ N. An element (x1, …, xn) ∈ En is called a norming point of T ∈ L(n E) if ∥x1 ∥ = · · · = ∥xn ∥ = 1 and |T (x1, …, xn)| = ∥T ∥, where L(n E) denotes the space of all continuous n-linear forms on E. For T ∈ L(n E), we define Norm(T) = { (x1, …, xn) ∈ En: (x1, …, xn) is a norming point of T } . Norm(T) is called the norming set of T . We classify Norm(T) for every T ∈ L(2 l1)2 or Ls (2 l1),3 where l1n = Rn with the l1-norm.
AB - Let n ∈ N. An element (x1, …, xn) ∈ En is called a norming point of T ∈ L(n E) if ∥x1 ∥ = · · · = ∥xn ∥ = 1 and |T (x1, …, xn)| = ∥T ∥, where L(n E) denotes the space of all continuous n-linear forms on E. For T ∈ L(n E), we define Norm(T) = { (x1, …, xn) ∈ En: (x1, …, xn) is a norming point of T } . Norm(T) is called the norming set of T . We classify Norm(T) for every T ∈ L(2 l1)2 or Ls (2 l1),3 where l1n = Rn with the l1-norm.
KW - bilinear forms
KW - Norming points
UR - http://www.scopus.com/inward/record.url?scp=85145237794&partnerID=8YFLogxK
U2 - 10.31926/but.mif.2022.2.64.2.10
DO - 10.31926/but.mif.2022.2.64.2.10
M3 - Article
AN - SCOPUS:85145237794
SN - 2810-2029
VL - 2
SP - 125
EP - 150
JO - Bulletin of the Transilvania University of Brasov, Series III: Mathematics and Computer Science
JF - Bulletin of the Transilvania University of Brasov, Series III: Mathematics and Computer Science
IS - 2
ER -