The norming sets of L(2Rh(w)2)

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

An element (x1, … , xn) ∈ En is called a norming point of T∈ L(nE) if ‖ x1‖ = ⋯ = ‖ xn‖ = 1 and | T(x1, … , xn) | = ‖ T‖ , where L(nE) denotes the space of all continuous n-linear forms on E. For T∈ L(nE) , we define Norm(T)={(x1,…,xn)∈En:(x1,…,xn)isanormingpointofT}. Let Rh(w)2 denote the plane with the hexagonal norm with weight 0 < w< 1 ‖(x,y)‖h(w)=max{|y|,|x|+(1-w)|y|}. We classify Norm (T) for every T∈L(2Rh(w)2) .

Original languageEnglish
Pages (from-to)61-79
Number of pages19
JournalActa Scientiarum Mathematicarum
Volume89
Issue number1-2
DOIs
StatePublished - Jun 2023

Keywords

  • Bilinear forms
  • Norming points

Fingerprint

Dive into the research topics of 'The norming sets of L(2Rh(w)2)'. Together they form a unique fingerprint.

Cite this