TY - JOUR
T1 - The norming sets of L(2Rh(w)2)
AU - Kim, Sung Guen
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to University of Szeged.
PY - 2023/6
Y1 - 2023/6
N2 - An element (x1, … , xn) ∈ En is called a norming point of T∈ L(nE) if ‖ x1‖ = ⋯ = ‖ xn‖ = 1 and | T(x1, … , xn) | = ‖ T‖ , where L(nE) denotes the space of all continuous n-linear forms on E. For T∈ L(nE) , we define Norm(T)={(x1,…,xn)∈En:(x1,…,xn)isanormingpointofT}. Let Rh(w)2 denote the plane with the hexagonal norm with weight 0 < w< 1 ‖(x,y)‖h(w)=max{|y|,|x|+(1-w)|y|}. We classify Norm (T) for every T∈L(2Rh(w)2) .
AB - An element (x1, … , xn) ∈ En is called a norming point of T∈ L(nE) if ‖ x1‖ = ⋯ = ‖ xn‖ = 1 and | T(x1, … , xn) | = ‖ T‖ , where L(nE) denotes the space of all continuous n-linear forms on E. For T∈ L(nE) , we define Norm(T)={(x1,…,xn)∈En:(x1,…,xn)isanormingpointofT}. Let Rh(w)2 denote the plane with the hexagonal norm with weight 0 < w< 1 ‖(x,y)‖h(w)=max{|y|,|x|+(1-w)|y|}. We classify Norm (T) for every T∈L(2Rh(w)2) .
KW - Bilinear forms
KW - Norming points
UR - http://www.scopus.com/inward/record.url?scp=85158976384&partnerID=8YFLogxK
U2 - 10.1007/s44146-023-00078-7
DO - 10.1007/s44146-023-00078-7
M3 - Article
AN - SCOPUS:85158976384
SN - 0001-6969
VL - 89
SP - 61
EP - 79
JO - Acta Scientiarum Mathematicarum
JF - Acta Scientiarum Mathematicarum
IS - 1-2
ER -