TY - JOUR
T1 - The organization of melanopsin-immunoreactive cells in microbat retina
AU - Jeong, Mi Jin
AU - Kim, Hang Gu
AU - Jeon, Chang Jin
N1 - Publisher Copyright:
© 2018 Jeong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/1
Y1 - 2018/1
N2 - Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light and play roles in non-image forming vision, such as circadian rhythms, pupil responses, and sleep regulation, or image forming vision, such as processing visual information and directing eye movements in response to visual clues. The purpose of the present study was to identify the distribution, types, and proportion of melanopsin-immunoreactive (IR) cells in the retina of a nocturnal animal, i.e., the microbat (Rhinolophus ferrumequinum). Three types of melanopsin-IR cells were observed in the present study. The M1 type had dendritic arbors that extended into the OFF sublayer of the inner plexiform layer (IPL). M1 soma locations were identified either in the ganglion cell layer (GCL, M1c; 21.00%) or in the inner nuclear layer (INL, M1d; 5.15%). The M2 type had monostratified dendrites in the ON sublayer of the IPL and their cell bodies lay in the GCL (M2; 5.79%). The M3 type was bistratified cells with dendrites in both the ON and OFF sublayers of the IPL. M3 soma locations were either in the GCL (M3c; 26.66%) or INL (M3d; 4.69%). Additionally, some M3c cells had curved dendrites leading up towards the OFF sublayer of the IPL and down to the ON sublayer of the IPL (M3c-crv; 7.67%). Melanopsin-IR cells displayed a medium soma size and medium dendritic field diameters. There were 2–5 primary dendrites and sparsely branched dendrites with varicosities. The total number of the neurons in the GCL was 12,254.17 ± 660.39 and that of the optic nerve axons was 5,179.04 ± 208.00 in the R. ferrumequinum retina. The total number of melanopsin-IR cells was 819.74 ± 52.03. The ipRGCs constituted approximately 15.83% of the total RGC population. This study demonstrated that the nocturnal microbat, R. ferrumequinum, has a much higher density of melanopsin-IR cells than documented in diurnal animals.
AB - Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light and play roles in non-image forming vision, such as circadian rhythms, pupil responses, and sleep regulation, or image forming vision, such as processing visual information and directing eye movements in response to visual clues. The purpose of the present study was to identify the distribution, types, and proportion of melanopsin-immunoreactive (IR) cells in the retina of a nocturnal animal, i.e., the microbat (Rhinolophus ferrumequinum). Three types of melanopsin-IR cells were observed in the present study. The M1 type had dendritic arbors that extended into the OFF sublayer of the inner plexiform layer (IPL). M1 soma locations were identified either in the ganglion cell layer (GCL, M1c; 21.00%) or in the inner nuclear layer (INL, M1d; 5.15%). The M2 type had monostratified dendrites in the ON sublayer of the IPL and their cell bodies lay in the GCL (M2; 5.79%). The M3 type was bistratified cells with dendrites in both the ON and OFF sublayers of the IPL. M3 soma locations were either in the GCL (M3c; 26.66%) or INL (M3d; 4.69%). Additionally, some M3c cells had curved dendrites leading up towards the OFF sublayer of the IPL and down to the ON sublayer of the IPL (M3c-crv; 7.67%). Melanopsin-IR cells displayed a medium soma size and medium dendritic field diameters. There were 2–5 primary dendrites and sparsely branched dendrites with varicosities. The total number of the neurons in the GCL was 12,254.17 ± 660.39 and that of the optic nerve axons was 5,179.04 ± 208.00 in the R. ferrumequinum retina. The total number of melanopsin-IR cells was 819.74 ± 52.03. The ipRGCs constituted approximately 15.83% of the total RGC population. This study demonstrated that the nocturnal microbat, R. ferrumequinum, has a much higher density of melanopsin-IR cells than documented in diurnal animals.
UR - http://www.scopus.com/inward/record.url?scp=85040039845&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0190435
DO - 10.1371/journal.pone.0190435
M3 - Article
C2 - 29304147
AN - SCOPUS:85040039845
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0190435
ER -