TY - JOUR
T1 - The Plastome Sequences of Triticum sphaerococcum (ABD) and Triticum turgidum subsp. durum (AB) Exhibit Evolutionary Changes, Structural Characterization, Comparative Analysis, Phylogenomics and Time Divergence
AU - Lubna,
AU - Asaf, Sajjad
AU - Jan, Rahmatullah
AU - Khan, Abdul Latif
AU - Ahmad, Waqar
AU - Asif, Saleem
AU - Al-Harrasi, Ahmed
AU - Kim, Kyung Min
AU - Lee, In Jung
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - The mechanism and course of Triticum plastome evolution is currently unknown; thus, it remains unclear how Triticum plastomes evolved during recent polyploidization. Here, we report the complete plastomes of two polyploid wheat species, Triticum sphaerococcum (AABBDD) and Triticum turgidum subsp. durum (AABB), and compare them with 19 available and complete Triticum plastomes to create the first map of genomic structural variation. Both T. sphaerococcum and T. turgidum subsp. durum plastomes were found to have a quadripartite structure, with plastome lengths of 134,531 bp and 134,015 bp, respectively. Furthermore, diploid (AA), tetraploid (AB, AG) and hexaploid (ABD, AGAm) Triticum species plastomes displayed a conserved gene content and commonly harbored an identical set of annotated unique genes. Overall, there was a positive correlation between the number of repeats and plastome size. In all plastomes, the number of tandem repeats was higher than the number of palindromic and forward repeats. We constructed a Triticum phylogeny based on the complete plastomes and 42 shared genes from 71 plastomes. We estimated the divergence of Hordeum vulgare from wheat around 11.04–11.9 million years ago (mya) using a well-resolved plastome tree. Similarly, Sitopsis species diverged 2.8–2.9 mya before Triticum urartu (AA) and Triticum monococcum (AA). Aegilops speltoides was shown to be the maternal donor of polyploid wheat genomes and diverged ~0.2–0.9 mya. The phylogeny and divergence time estimates presented here can act as a reference framework for future studies of Triticum evolution.
AB - The mechanism and course of Triticum plastome evolution is currently unknown; thus, it remains unclear how Triticum plastomes evolved during recent polyploidization. Here, we report the complete plastomes of two polyploid wheat species, Triticum sphaerococcum (AABBDD) and Triticum turgidum subsp. durum (AABB), and compare them with 19 available and complete Triticum plastomes to create the first map of genomic structural variation. Both T. sphaerococcum and T. turgidum subsp. durum plastomes were found to have a quadripartite structure, with plastome lengths of 134,531 bp and 134,015 bp, respectively. Furthermore, diploid (AA), tetraploid (AB, AG) and hexaploid (ABD, AGAm) Triticum species plastomes displayed a conserved gene content and commonly harbored an identical set of annotated unique genes. Overall, there was a positive correlation between the number of repeats and plastome size. In all plastomes, the number of tandem repeats was higher than the number of palindromic and forward repeats. We constructed a Triticum phylogeny based on the complete plastomes and 42 shared genes from 71 plastomes. We estimated the divergence of Hordeum vulgare from wheat around 11.04–11.9 million years ago (mya) using a well-resolved plastome tree. Similarly, Sitopsis species diverged 2.8–2.9 mya before Triticum urartu (AA) and Triticum monococcum (AA). Aegilops speltoides was shown to be the maternal donor of polyploid wheat genomes and diverged ~0.2–0.9 mya. The phylogeny and divergence time estimates presented here can act as a reference framework for future studies of Triticum evolution.
KW - Chloroplast genome
KW - Inverted repeats
KW - Polyploidy
KW - Triticum sphaerococcum
KW - Triticum turgidum subsp. durum
KW - Wheat
UR - http://www.scopus.com/inward/record.url?scp=85125577137&partnerID=8YFLogxK
U2 - 10.3390/ijms23052783
DO - 10.3390/ijms23052783
M3 - Article
C2 - 35269924
AN - SCOPUS:85125577137
SN - 1661-6596
VL - 23
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 5
M1 - 2783
ER -