TY - JOUR
T1 - The role of acetone-fractionated Kraft lignin molecular structure on surface adhesion to formaldehyde-based resins
AU - Wibowo, Eko Setio
AU - Park, Byung Dae
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/1/15
Y1 - 2023/1/15
N2 - One of the key strategies for valorizing kraft lignin (KL) into value-added products such as bio-based adhesives is to perform solvent fractionation of KL to produce lignin with improved homogeneity. Understanding the structure and properties of fractionated KL will aid in the selection of the best samples for certain applications. In this study, acetone-fractionated KL from softwood and hardwood was characterized to understand its chemical structure, elemental composition, molecular weight, and thermal properties. The results revealed that acetone-insoluble KL (AIKL) fractions from softwood and hardwood have greater molecular weight, polydispersity, glass temperature, carbohydrate content, aliphatic hydroxyl groups, and a variety of native wood lignin side chains. In contrast, acetone-soluble KL (ASKL) fractions have a significantly lower molecular weight and polydispersity, a lower glass-transition temperature, a more condensed structure, more aromatic hydroxyl groups, and fewer native wood lignin side chains. In addition, the ASKL samples demonstrated stronger adhesive force and work of adhesion toward phenol–formaldehyde (PF) and urea–formaldehyde (UF) resins than the AIKL samples, regardless of the lignin source. These findings suggest that ASKL has great potential as a substitute for phenol in PF resins and as a green additive to reinforce UF resins.
AB - One of the key strategies for valorizing kraft lignin (KL) into value-added products such as bio-based adhesives is to perform solvent fractionation of KL to produce lignin with improved homogeneity. Understanding the structure and properties of fractionated KL will aid in the selection of the best samples for certain applications. In this study, acetone-fractionated KL from softwood and hardwood was characterized to understand its chemical structure, elemental composition, molecular weight, and thermal properties. The results revealed that acetone-insoluble KL (AIKL) fractions from softwood and hardwood have greater molecular weight, polydispersity, glass temperature, carbohydrate content, aliphatic hydroxyl groups, and a variety of native wood lignin side chains. In contrast, acetone-soluble KL (ASKL) fractions have a significantly lower molecular weight and polydispersity, a lower glass-transition temperature, a more condensed structure, more aromatic hydroxyl groups, and fewer native wood lignin side chains. In addition, the ASKL samples demonstrated stronger adhesive force and work of adhesion toward phenol–formaldehyde (PF) and urea–formaldehyde (UF) resins than the AIKL samples, regardless of the lignin source. These findings suggest that ASKL has great potential as a substitute for phenol in PF resins and as a green additive to reinforce UF resins.
KW - Acetone fractionation
KW - Adhesion
KW - Formaldehyde-based resins
KW - Hardwood
KW - Kraft lignin
KW - Lignin characterization
KW - Softwood
UR - http://www.scopus.com/inward/record.url?scp=85142862320&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2022.11.202
DO - 10.1016/j.ijbiomac.2022.11.202
M3 - Article
C2 - 36436598
AN - SCOPUS:85142862320
SN - 0141-8130
VL - 225
SP - 1449
EP - 1461
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
ER -