TY - JOUR
T1 - The Role of Exogenous Gibberellic Acid and Methyl Jasmonate against White-Backed Planthopper (Sogatella furcifera) Stress in Rice (Oryza sativa L.)
AU - Asif, Saleem
AU - Jang, Yoon Hee
AU - Kim, Eun Gyeong
AU - Jan, Rahmatullah
AU - Asaf, Sajjad
AU - Aaqil Khan, Muhammad
AU - Farooq, Muhammad
AU - Lubna,
AU - Kim, Nari
AU - Lee, In Jung
AU - Kim, Kyung Min
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/12
Y1 - 2022/12
N2 - Rice (Oryza sativa L.) is one of the essential staple foods for more than half of the world’s population, and its production is affected by different environmental abiotic and biotic stress conditions. The white-backed planthopper (WBPH, Sogatella furcifera) causes significant damage to rice plants, leading to substantial economic losses due to reduced production. In this experiment, we applied exogenous hormones (gibberellic acid and methyl jasmonate) to WBPH-infested rice plants and examined the relative expression of related genes, antioxidant accumulation, the recovery rate of affected plants, endogenous hormones, the accumulation of H2O2, and the rate of cell death using DAB and trypan staining, respectively. The expression of the transcriptional regulator (OsGAI) and gibberellic-acid-mediated signaling regulator (OsGID2) was upregulated significantly in GA 50 µM + WBPH after 36 h. OsGAI was upregulated in the control, GA 50 µM + WBPH, GA 100 µM + WBPH, and MeJA 100 µM + WBPH. However, after 48 h, the OsGID2 was significantly highly expressed in all groups of plants. The glutathione (GSH) values were significantly enhanced by GA 100 µM and MeJA 50 µM treatment. Unlike glutathione (GSH), the catalase (CAT) and peroxidase (POD) values were significantly reduced in control + WBPH plants. However, a slight increase in CAT and POD values was observed in GA 50 + WBPH plants and a reduction in the POD value was observed in GA 100 µM + WBPH and MeJA 50 µM + WBPH plants. GA highly recovered the WBPH-affected rice plants, while no recovery was seen in MeJA-treated plants. MeJA was highly accumulated in control + WBPH, MeJA 50 µM + WBPH, and GA 100 µM + WBPH plants. The H2O2 accumulation was highly decreased in GA-treated plants, while extensive cell death was observed in MeJA-treated plants compared with GA-treated plants. From this study, we can conclude that the exogenous application of GA can overcome the effects of the WBPH and enhance resistance in rice.
AB - Rice (Oryza sativa L.) is one of the essential staple foods for more than half of the world’s population, and its production is affected by different environmental abiotic and biotic stress conditions. The white-backed planthopper (WBPH, Sogatella furcifera) causes significant damage to rice plants, leading to substantial economic losses due to reduced production. In this experiment, we applied exogenous hormones (gibberellic acid and methyl jasmonate) to WBPH-infested rice plants and examined the relative expression of related genes, antioxidant accumulation, the recovery rate of affected plants, endogenous hormones, the accumulation of H2O2, and the rate of cell death using DAB and trypan staining, respectively. The expression of the transcriptional regulator (OsGAI) and gibberellic-acid-mediated signaling regulator (OsGID2) was upregulated significantly in GA 50 µM + WBPH after 36 h. OsGAI was upregulated in the control, GA 50 µM + WBPH, GA 100 µM + WBPH, and MeJA 100 µM + WBPH. However, after 48 h, the OsGID2 was significantly highly expressed in all groups of plants. The glutathione (GSH) values were significantly enhanced by GA 100 µM and MeJA 50 µM treatment. Unlike glutathione (GSH), the catalase (CAT) and peroxidase (POD) values were significantly reduced in control + WBPH plants. However, a slight increase in CAT and POD values was observed in GA 50 + WBPH plants and a reduction in the POD value was observed in GA 100 µM + WBPH and MeJA 50 µM + WBPH plants. GA highly recovered the WBPH-affected rice plants, while no recovery was seen in MeJA-treated plants. MeJA was highly accumulated in control + WBPH, MeJA 50 µM + WBPH, and GA 100 µM + WBPH plants. The H2O2 accumulation was highly decreased in GA-treated plants, while extensive cell death was observed in MeJA-treated plants compared with GA-treated plants. From this study, we can conclude that the exogenous application of GA can overcome the effects of the WBPH and enhance resistance in rice.
KW - antioxidant
KW - biotic stress
KW - exogenous hormones
KW - gibberellic acid and methyl jasmonate
KW - white-backed planthoppers
UR - http://www.scopus.com/inward/record.url?scp=85143843594&partnerID=8YFLogxK
U2 - 10.3390/ijms232314737
DO - 10.3390/ijms232314737
M3 - Article
C2 - 36499068
AN - SCOPUS:85143843594
SN - 1661-6596
VL - 23
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 23
M1 - 14737
ER -