THE ZERO-DIVISOR GRAPHS OF Z(+)Zn AND (Z(+)Zn )[X ]

Min Ji Park, Jong Won Jeong, Jung Wook Lim, Jin Won Bae

Research output: Contribution to journalArticlepeer-review

Abstract

Let Z be the ring of integers and let Zn be the ring of integers modulo n. Let Z(+)Zn be the idealization of Zn in Z and let (Z(+)Zn)[X]] be either (Z(+)Zn)[X] or (Z(+)Zn)[[X]]. In this article, we study the zerodivisor graphs of Z(+)Zn and (Z(+)Zn)[X]]. More precisely, we completely characterize the diameter and the girth of the zero-divisor graphs of Z(+)Zn and (Z(+)Zn)[X]]. We also calculate the chromatic number of the zerodivisor graphs of Z(+)Zn and (Z(+)Zn)[X]].

Original languageEnglish
Pages (from-to)729-740
Number of pages12
JournalJournal of Applied Mathematics and Informatics
Volume40
Issue number3-4
DOIs
StatePublished - 2022

Keywords

  • chromatic number
  • clique
  • diameter
  • girth
  • Γ((Z(+)Z)[X]])
  • Γ(Z(+)Z)

Fingerprint

Dive into the research topics of 'THE ZERO-DIVISOR GRAPHS OF Z(+)Zn AND (Z(+)Zn )[X ]'. Together they form a unique fingerprint.

Cite this