Abstract
Let Z be the ring of integers and let Zn be the ring of integers modulo n. Let Z(+)Zn be the idealization of Zn in Z and let (Z(+)Zn)[X]] be either (Z(+)Zn)[X] or (Z(+)Zn)[[X]]. In this article, we study the zerodivisor graphs of Z(+)Zn and (Z(+)Zn)[X]]. More precisely, we completely characterize the diameter and the girth of the zero-divisor graphs of Z(+)Zn and (Z(+)Zn)[X]]. We also calculate the chromatic number of the zerodivisor graphs of Z(+)Zn and (Z(+)Zn)[X]].
Original language | English |
---|---|
Pages (from-to) | 729-740 |
Number of pages | 12 |
Journal | Journal of Applied Mathematics and Informatics |
Volume | 40 |
Issue number | 3-4 |
DOIs | |
State | Published - 2022 |
Keywords
- chromatic number
- clique
- diameter
- girth
- Γ((Z(+)Z)[X]])
- Γ(Z(+)Z)