Therapeutic potential of aav1-rheb(S16h) transduction against alzheimer’s disease

Gyeong Joon Moon, Sehwan Kim, Min Tae Jeon, Kea Joo Lee, Il Sung Jang, Michiko Nakamura, Sang Ryong Kim

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We recently reported that adeno-associated virus serotype 1-constitutively active Ras homolog enriched in brain [AAV1-Rheb(S16H)] transduction of hippocampal neurons could induce neuron-astroglia interactions in the rat hippocampus in vivo, resulting in neuroprotection. However, it remains uncertain whether AAV1-Rheb(S16H) transduction induces neurotrophic effects and preserves the cognitive memory in an animal model of Alzheimer’s disease (AD) with characteristic phenotypic features, such as β-amyloid (Aβ) accumulation and cognitive impairments. To assess the therapeutic potential of Rheb(S16H) in AD, we have examined the beneficial effects of AAV1-Rheb(S16H) administration in the 5XFAD mouse model. Rheb(S16H) transduction of hippocampal neurons in the 5XFAD mice increased the levels of neurotrophic signaling molecules, including brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), and their corresponding receptors, tropomyosin receptor kinase B (TrkB) and CNTF receptor α subunit (CNTFRα), respectively. In addition, Rheb(S16H) transduction inhibited Aβ production and accumulation in the hippocampus of 5XFAD mice and protected the decline of long-term potentiation (LTP), resulting in the prevention of cognitive impairments, which was demonstrated using novel object recognition testing. These results indicate that Rheb(S16H) transduction of hippocampal neurons may have therapeutic potential in AD by inhibiting Aβ accumulation and preserving LTP associated with cognitive memory.

Original languageEnglish
Article number2053
JournalJournal of Clinical Medicine
Volume8
Issue number12
DOIs
StatePublished - Dec 2019

Keywords

  • Cognitive
  • Impairment Alzheimer’s disease
  • Neurotrophic signaling
  • Rheb(S16H)
  • β-amyloid

Fingerprint

Dive into the research topics of 'Therapeutic potential of aav1-rheb(S16h) transduction against alzheimer’s disease'. Together they form a unique fingerprint.

Cite this