TY - JOUR
T1 - THERE ARE NO NUMERICAL RADIUS PEAK n-LINEAR MAPPINGS ON c0
AU - Kim, Sung Guen
N1 - Publisher Copyright:
© 2023 Korean Mathematical Society.
PY - 2023/5/1
Y1 - 2023/5/1
N2 - For n ≥ 2 and a real Banach space E, L(n E: E) denotes the space of all continuous n-linear mappings from E to itself. Let Π(E) = {[x∗, (x1, …, xn)]: x∗ (xj) = ∥x∗ ∥ = ∥xj ∥ = 1 for j = 1, …, n }. An element [x∗, (x1, …, xn)] ∈ Π(E) is called a numerical radius point of T ∈ L(n E: E) if |x∗ (T (x1, …, xn))| = v(T), where the numerical radius ∣ v(T) = sup[y∗,y1,…,yn]∈Π(E) ∣y (T∗∣∣. (y1, …, yn))∣ For T ∈ L(n E: E), we define Nradius(T) = {[x∗, (x1, …, xn)] ∈ Π(E): [x∗, (x1, …, xn)] is a numerical radius point of T }. T is called a numerical radius peak n-linear mapping if there is a unique [x∗, (x1, …, xn)] ∈ Π(E) such that Nradius(T) = {±[x∗, (x1, …, xn)]}. In this paper we present explicit formulae for the numerical radius of T for every T ∈ L(n E: E) for E = c0 or l∞. Using these formulae we show that there are no numerical radius peak mappings of L(n c0: c0).
AB - For n ≥ 2 and a real Banach space E, L(n E: E) denotes the space of all continuous n-linear mappings from E to itself. Let Π(E) = {[x∗, (x1, …, xn)]: x∗ (xj) = ∥x∗ ∥ = ∥xj ∥ = 1 for j = 1, …, n }. An element [x∗, (x1, …, xn)] ∈ Π(E) is called a numerical radius point of T ∈ L(n E: E) if |x∗ (T (x1, …, xn))| = v(T), where the numerical radius ∣ v(T) = sup[y∗,y1,…,yn]∈Π(E) ∣y (T∗∣∣. (y1, …, yn))∣ For T ∈ L(n E: E), we define Nradius(T) = {[x∗, (x1, …, xn)] ∈ Π(E): [x∗, (x1, …, xn)] is a numerical radius point of T }. T is called a numerical radius peak n-linear mapping if there is a unique [x∗, (x1, …, xn)] ∈ Π(E) such that Nradius(T) = {±[x∗, (x1, …, xn)]}. In this paper we present explicit formulae for the numerical radius of T for every T ∈ L(n E: E) for E = c0 or l∞. Using these formulae we show that there are no numerical radius peak mappings of L(n c0: c0).
KW - multilinear mappings
KW - numerical radius peak
KW - Numerical radius points
UR - https://www.scopus.com/pages/publications/85161404362
U2 - 10.4134/BKMS.b220330
DO - 10.4134/BKMS.b220330
M3 - Article
AN - SCOPUS:85161404362
SN - 1015-8634
VL - 60
SP - 677
EP - 685
JO - Bulletin of the Korean Mathematical Society
JF - Bulletin of the Korean Mathematical Society
IS - 3
ER -