THERE ARE NO NUMERICAL RADIUS PEAK n-LINEAR MAPPINGS ON c0

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

For n ≥ 2 and a real Banach space E, L(n E: E) denotes the space of all continuous n-linear mappings from E to itself. Let Π(E) = {[x, (x1, …, xn)]: x (xj) = ∥x ∥ = ∥xj ∥ = 1 for j = 1, …, n }. An element [x, (x1, …, xn)] ∈ Π(E) is called a numerical radius point of T ∈ L(n E: E) if |x (T (x1, …, xn))| = v(T), where the numerical radius ∣ v(T) = sup[y,y1,…,yn]∈Π(E) ∣y (T∣∣. (y1, …, yn))∣ For T ∈ L(n E: E), we define Nradius(T) = {[x, (x1, …, xn)] ∈ Π(E): [x, (x1, …, xn)] is a numerical radius point of T }. T is called a numerical radius peak n-linear mapping if there is a unique [x, (x1, …, xn)] ∈ Π(E) such that Nradius(T) = {±[x, (x1, …, xn)]}. In this paper we present explicit formulae for the numerical radius of T for every T ∈ L(n E: E) for E = c0 or l. Using these formulae we show that there are no numerical radius peak mappings of L(n c0: c0).

Original languageEnglish
Pages (from-to)677-685
Number of pages9
JournalBulletin of the Korean Mathematical Society
Volume60
Issue number3
DOIs
StatePublished - 1 May 2023

Keywords

  • multilinear mappings
  • numerical radius peak
  • Numerical radius points

Fingerprint

Dive into the research topics of 'THERE ARE NO NUMERICAL RADIUS PEAK n-LINEAR MAPPINGS ON c0'. Together they form a unique fingerprint.

Cite this