Abstract
Plane sweep plays an important role in computational geometry. This paper shows that an extension of topological plane sweep to three-dimensional space can calculate the volume swept by rotating a solid polyhedral object about a fixed axis. Analyzing the characteristics of rotational swept volumes, we present an incremental algorithm based on the three-dimensional topological sweep technique. Our solution shows the time bound of O(n2 · 2α(n) + Tc), where n is the number of vertices in the original object and Tc is time for handling face cycles. Here, α(n) is the inverse of Ackermann's function.
Original language | English |
---|---|
Pages (from-to) | 131-156 |
Number of pages | 26 |
Journal | International Journal of Computational Geometry and Applications |
Volume | 10 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2000 |
Keywords
- Incremental construction
- Rotation
- Swept volume
- Topological sweep