Tooth caries classification with quantitative light-induced fluorescence (QLF) images using convolutional neural network for permanent teeth in vivo

Eun Young Park, Sungmoon Jeong, Sohee Kang, Jungrae Cho, Ju Yeon Cho, Eun Kyong Kim

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: Owing to the remarkable advancements of artificial intelligence (AI) applications, AI-based detection of dental caries is continuously improving. We evaluated the efficacy of the detection of dental caries with quantitative light-induced fluorescence (QLF) images using a convolutional neural network (CNN) model. Methods: Overall, 2814 QLF intraoral images were obtained from 606 participants at a dental clinic using Qraypen C® (QC, AIOBIO, Seoul, Republic of Korea) from October 2020 to October 2022. These images included all the types of permanent teeth of which surfaces were smooth or occlusal. Dataset were randomly assigned to the training (56.0%), validation (14.0%), and test (30.0%) subsets of the dataset for caries classification. Moreover, masked images for teeth area were manually prepared to evaluate the segmentation efficacy. To compare diagnostic performance for caries classification according to the types of teeth, the dataset was further classified into the premolar (1,143 images) and molar (1,441 images) groups. As the CNN model, Xception was applied. Results: Using the original QLF images, the performance of the classification algorithm was relatively good showing 83.2% of accuracy, 85.6% of precision, and 86.9% of sensitivity. After applying the segmentation process for the tooth area, all the performance indics including 85.6% of accuracy, 88.9% of precision, and 86.9% of sensitivity were improved. However, the performance indices of each type of teeth (both premolar and molar) were similar to those for all teeth. Conclusion: The application of AI to QLF images for caries classification demonstrated a good performance regardless of teeth type among posterior teeth. Additionally, tooth area segmentation through background elimination from QLF images exhibited a better performance.

Original languageEnglish
Article number981
JournalBMC Oral Health
Volume23
Issue number1
DOIs
StatePublished - Dec 2023

Keywords

  • Artificial intelligence
  • Convolutional neural network
  • Deep learning
  • Quantitative light-induced fluorescence
  • Tooth surface segmentation

Fingerprint

Dive into the research topics of 'Tooth caries classification with quantitative light-induced fluorescence (QLF) images using convolutional neural network for permanent teeth in vivo'. Together they form a unique fingerprint.

Cite this