TY - JOUR
T1 - Transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential melastatin 8 (TRPM8) in human odontoblast-like cells participate in lipopolysaccharide-induced immune response
AU - Kim, Yun Sook
AU - Otgonsuren, Munkh Ochir
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/11
Y1 - 2023/11
N2 - Objectives: To investigate whether transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential melastatin 8 (TRPM8) have a function in responding to environmental stimuli in human odontoblast-like cells (hOLCs). Additionally, to explore whether activation of TRPA1 and TRPM8 in hOLCs participates in the regulation of the inflammatory process. Design: Changes in gene and protein expression levels of TRPA1 and TRPM8 in cultured hOLCs following lipopolysaccharide (LPS) stimulation, which mimics inflammation, were examined using quantitative reverse transcription-polymerase chain reaction and western blot analysis. Furthermore, we compared the expression profiles of 80 cytokines between LPS- and vehicle-treated hOLCs and investigated how the production of highly increased cytokines in LPS-treated hOLCs was affected by the pharmacological inhibition of TRPA1 and TRPM8. Results: The expression of TRPA1 and TRPM8 in hOLCs was observed and their mRNAs and proteins were upregulated in hOLCs after LPS treatment. Moreover, cytokine antibody assays revealed that monocyte chemoattractant protein-1 (MCP-1, CCL2), growth-regulated protein α (GROα, CXCL1), interleukin-6 (IL-6), and IL-8 (CXCL8) were significantly upregulated by LPS. The pharmacological inhibition of TRPA1 (HC-030031) during LPS treatment attenuated the expression of CCL2, CXCL1, and IL-8, whereas the pharmacological inhibition of TRPM8 (PF05105679) suppressed the expression of CCL2, CXCL1, and IL-8 as well as IL-6. Conclusions: These results indicate that hOLCs express TRPA1 and TRPM8, which are upregulated during inflammation. In addition to being sensors of potentially harmful stimuli, TRPA1 and TRPM8 in hOLCs play important roles in regulating inflammatory responses.
AB - Objectives: To investigate whether transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential melastatin 8 (TRPM8) have a function in responding to environmental stimuli in human odontoblast-like cells (hOLCs). Additionally, to explore whether activation of TRPA1 and TRPM8 in hOLCs participates in the regulation of the inflammatory process. Design: Changes in gene and protein expression levels of TRPA1 and TRPM8 in cultured hOLCs following lipopolysaccharide (LPS) stimulation, which mimics inflammation, were examined using quantitative reverse transcription-polymerase chain reaction and western blot analysis. Furthermore, we compared the expression profiles of 80 cytokines between LPS- and vehicle-treated hOLCs and investigated how the production of highly increased cytokines in LPS-treated hOLCs was affected by the pharmacological inhibition of TRPA1 and TRPM8. Results: The expression of TRPA1 and TRPM8 in hOLCs was observed and their mRNAs and proteins were upregulated in hOLCs after LPS treatment. Moreover, cytokine antibody assays revealed that monocyte chemoattractant protein-1 (MCP-1, CCL2), growth-regulated protein α (GROα, CXCL1), interleukin-6 (IL-6), and IL-8 (CXCL8) were significantly upregulated by LPS. The pharmacological inhibition of TRPA1 (HC-030031) during LPS treatment attenuated the expression of CCL2, CXCL1, and IL-8, whereas the pharmacological inhibition of TRPM8 (PF05105679) suppressed the expression of CCL2, CXCL1, and IL-8 as well as IL-6. Conclusions: These results indicate that hOLCs express TRPA1 and TRPM8, which are upregulated during inflammation. In addition to being sensors of potentially harmful stimuli, TRPA1 and TRPM8 in hOLCs play important roles in regulating inflammatory responses.
KW - CCL2
KW - CXCL1
KW - IL-6
KW - IL-8
KW - Inflammation
KW - Odontoblast
KW - TRPA1
KW - TRPM8
UR - http://www.scopus.com/inward/record.url?scp=85169880404&partnerID=8YFLogxK
U2 - 10.1016/j.archoralbio.2023.105800
DO - 10.1016/j.archoralbio.2023.105800
M3 - Article
AN - SCOPUS:85169880404
SN - 0003-9969
VL - 155
JO - Archives of Oral Biology
JF - Archives of Oral Biology
M1 - 105800
ER -